Workshopbeitrag
Recommendations to Handle Health-related Small Imbalanced Data in Machine Learning
Lade...
Volltext URI
Dokumententyp
Text/Workshop Paper
Dateien
Zusatzinformation
Datum
2020
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
When discussing interpretable machine learning results, researchers need to compare results and reflect on reliable results, especially for health-related data. The reason is the negative impact of wrong results on a person, such as in missing early screening of dyslexia or wrong prediction of cancer. We present nine criteria that help avoiding over-fitting and biased interpretation of results when having small imbalanced data related to health. We present a use case of early screening of dyslexia with an imbalanced data set using machine learning classification to explain design decisions and discuss issues for further research.