Logo des Repositoriums
 
Zeitschriftenartikel

Autonomous Learning of Representations

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2015

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Springer

Zusammenfassung

Besides the core learning algorithm itself, one major question in machine learning is how to best encode given training data such that the learning technology can efficiently learn based thereon and generalize to novel data. While classical approaches often rely on a hand coded data representation, the topic of autonomous representation or feature learning plays a major role in modern learning architectures. The goal of this contribution is to give an overview about different principles of autonomous feature learning, and to exemplify two principles based on two recent examples: autonomous metric learning for sequences, and autonomous learning of a deep representation for spoken language, respectively.

Beschreibung

Walter, Oliver; Haeb-Umbach, Reinhold; Mokbel, Bassam; Paassen, Benjamin; Hammer, Barbara (2015): Autonomous Learning of Representations. KI - Künstliche Intelligenz: Vol. 29, No. 4. Springer. PISSN: 1610-1987. pp. 339-351

Zitierform

DOI

Tags