Logo des Repositoriums
 

Reuse, Reduce, Support: Design Principles for Green Data Mining

dc.contributor.authorSchneider, Johannes
dc.contributor.authorSeidel, Stefan
dc.contributor.authorBasalla, Marcus
dc.contributor.authorBrocke, Jan
dc.date.accessioned2023-02-27T10:50:56Z
dc.date.available2023-02-27T10:50:56Z
dc.date.issued2023
dc.description.abstractThis paper reports on a design science research (DSR) study that develops design principles for “green” – more environmentally sustainable – data mining processes. Grounded in the Cross Industry Standard Process for Data Mining (CRISP-DM) and on a review of relevant literature on data mining methods, Green IT, and Green IS, the study identifies eight design principles that fall into the three categories of reuse, reduce, and support. The paper develops an evaluation strategy and provides empirical evidence for the principles’ utility. It suggests that the results can inform the development of a more general approach towards Green Data Science and provide a suitable lens to study sustainable computing.de
dc.identifier.doi10.1007/s12599-022-00780-w
dc.identifier.pissn1867-0202
dc.identifier.urihttp://dx.doi.org/10.1007/s12599-022-00780-w
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40415
dc.publisherSpringer
dc.relation.ispartofBusiness & Information Systems Engineering: Vol. 65, No. 1
dc.relation.ispartofseriesBusiness & Information Systems Engineering
dc.subjectData mining||Design principles||Design science research||Energy efficiency||Energy-saving||Green Data Science||Green IS||Green IT
dc.titleReuse, Reduce, Support: Design Principles for Green Data Miningde
dc.typeText/Journal Article
gi.citation.endPage83
gi.citation.startPage65

Dateien