Logo des Repositoriums
 

The Impact of Time on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach

dc.contributor.authorLex, Elisabeth
dc.contributor.authorKowald, Dominik
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:25Z
dc.date.available2019-08-27T12:55:25Z
dc.date.issued2019
dc.description.abstractIn our work [KPL17], we study temporal usage patterns of Twitter hashtags, and we use the Base-Level Learning (BLL) equation from the cognitive architecture ACT-R [An04] to model how a person reuses her own, individual hashtags as well as hashtags from her social network. The BLL equation accounts for the time-dependent decay of item exposure in human memory. According to BLL, the usefulness of a piece of information (e.g., a hashtag) is defined by how frequently and how recently it was used in the past, following a time-dependent decay that is best modeled with a power-law distribution. We used the BLL equation in our previous work to recommend tags in social bookmarking systems [KL16]. Here [KPL17], we adopt the BLL equation to model temporal reuse patterns of individual (i.e., reusing own hashtags) and social hashtags (i.e., reusing hashtags, which has been previously used by a followee) and to build a cognitive-inspired hashtag recommendation algorithm. We demonstrate the efficacy of our approach in two empirical social networks crawled from Twitter, i.e., CompSci and Random (for details about the datasets, see [KPL17]). Our results show that our approach can outperform current state-of-the-art hashtag recommendation approaches.en
dc.identifier.doi10.18420/inf2019_46
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24995
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjecthashtag recommendation
dc.subjectACT-R
dc.subjecttemporal effects
dc.subjecthashtag reuse
dc.subjectuser behavior modeling
dc.titleThe Impact of Time on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approachen
dc.typeText/Conference Paper
gi.citation.endPage286
gi.citation.publisherPlaceBonn
gi.citation.startPage285
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_23.pdf
Größe:
558.92 KB
Format:
Adobe Portable Document Format