Logo des Repositoriums
 

Using feature construction for dimensionality reduction in big data scenarios to allow real time classification of sequence data

dc.contributor.authorSchaidnagel, Michael
dc.contributor.authorLaux, Fritz
dc.contributor.authorConnolly, Thomas
dc.contributor.editorZimmermann, Alfred
dc.contributor.editorRossmann, Alexander
dc.date.accessioned2017-06-30T08:22:13Z
dc.date.available2017-06-30T08:22:13Z
dc.date.issued2015
dc.description.abstractA sequence of transactions represents a complex and multi-dimensional type of data. Feature construction can be used to reduce the dataś dimensionality to find behavioural patterns within such sequences. The patterns can be expressed using the blue prints of the constructed relevant features. These blue prints can then be used for real time classification on other sequences.en
dc.identifier.isbn978-3-88579-638-1
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDigital Enterprise Computing (DEC 2015)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-244
dc.titleUsing feature construction for dimensionality reduction in big data scenarios to allow real time classification of sequence dataen
dc.typeText/Conference Paper
gi.citation.endPage269
gi.citation.publisherPlaceBonn
gi.citation.startPage259
gi.conference.date25.-26. June 2015
gi.conference.locationBöblingen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
259.pdf
Größe:
695.52 KB
Format:
Adobe Portable Document Format