Logo des Repositoriums
 

Image landmark recognition with hierarchical K-means tree

dc.contributor.authorRischka, Magdalena
dc.contributor.authorConrad, Stefan
dc.contributor.editorSeidl, Thomas
dc.contributor.editorRitter, Norbert
dc.contributor.editorSchöning, Harald
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHärder, Theo
dc.contributor.editorFriedrich, Steffen
dc.contributor.editorWingerath, Wolfram
dc.date.accessioned2017-06-30T11:40:46Z
dc.date.available2017-06-30T11:40:46Z
dc.date.issued2015
dc.description.abstractToday's giant-sized image databases require content-based techniques to handle the exploration of image content on a large scale. A special part of image content retrieval is the domain of landmark recognition in images as it constitutes a basis for a lot of interesting applications on web images, personal image collections and mobile devices. We build an automatic landmark recognition system for images using the Bag-of-Words model in combination with the Hierarchical K-Means index structure. Our experiments on a test set of landmark and non-landmark images with a recognition engine supporting 900 landmarks show that large visual dictionaries of size about 1M achieve the best recognition results.en
dc.identifier.isbn978-3-88579-635-0
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2015)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-241
dc.titleImage landmark recognition with hierarchical K-means treeen
dc.typeText/Conference Paper
gi.citation.endPage464
gi.citation.publisherPlaceBonn
gi.citation.startPage455
gi.conference.date2.-3. März 2015
gi.conference.locationHamburg

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
455.pdf
Größe:
132.46 KB
Format:
Adobe Portable Document Format