Logo des Repositoriums
 

Scalable N-Way Model Matching Using Multi-Dimensional Search Trees - Summary

dc.contributor.authorSchultheiß, Alexander
dc.contributor.authorBittner, Paul Maximilian
dc.contributor.authorThüm, Thomas
dc.contributor.authorKehrer, Timo
dc.contributor.editorGrunske, Lars
dc.contributor.editorSiegmund, Janet
dc.contributor.editorVogelsang, Andreas
dc.date.accessioned2022-01-19T12:56:54Z
dc.date.available2022-01-19T12:56:54Z
dc.date.issued2022
dc.description.abstractIn this work, we report about recent research on n-way model matching, originally published at the International Conference on Model Driven Engineering Languages and Systems (MODELS) 2021. Model matching algorithms are used to identify common elements in input models, which is a fundamental precondition for many software engineering tasks, such as merging software variants or views. If there are multiple input models, an n-way matching algorithm that simultaneously processes all models typically produces better results than the sequential application of two-way matching algorithms. However, existing algorithms for n-way matching do not scale well, as the computational effort grows fast in the number of models and their size. We propose a scalable n-way model matching algorithm, which uses multi-dimensional search trees for efficiently finding suitable match candidates through range queries. We implemented our generic algorithm named RaQuN (Range Queries on N input models) in Java, and empirically evaluate the matching quality and runtime performance on several datasets of different origin and model type. Compared to the state-of-the-art, our experimental results show a performance improvement by an order of magnitude, while delivering matching results of better quality.en
dc.identifier.doi10.18420/se2022-ws-028
dc.identifier.isbn978-3-88579-714-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37981
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-320
dc.subjectModel-driven engineering
dc.subjectn-way model matching
dc.subjectclone-and-own development
dc.subjectsoftware product lines
dc.subjectmulti-view integration
dc.subjectvariability mining
dc.titleScalable N-Way Model Matching Using Multi-Dimensional Search Trees - Summaryen
dc.typeText/Conference Paper
gi.citation.endPage84
gi.citation.publisherPlaceBonn
gi.citation.startPage83
gi.conference.date21.-25. Feburar 2022
gi.conference.locationBerlin/Virtuell
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A1-28.pdf
Größe:
212.4 KB
Format:
Adobe Portable Document Format