Logo des Repositoriums
 

OrthoMAD: Morphing Attack Detection Through Orthogonal Identity Disentanglement

dc.contributor.authorPedro C Neto, Tiago Gonçalves
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:27Z
dc.date.available2022-10-27T10:19:27Z
dc.date.issued2022
dc.description.abstractMorphing attacks are one of the many threats that are constantly affecting deep face recognition systems. It consists of selecting two faces from different individuals and fusing them into a final image that contains the identity information of both. In this work, we propose a novel regularisation term that takes into account the existent identity information in both and promotes the creation of two orthogonal latent vectors.We evaluate our proposed method (OrthoMAD) in five different types of morphing in the FRLL dataset and evaluate the performance of our model when trained on five distinct datasets. With a small ResNet-18 as the backbone, we achieve state-of-the-art results in the majority of the experiments, and competitive results in the others.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897057
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5484
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39693
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectFace
dc.subjectPresentation Attack Detection
dc.subjectMorphing
dc.subjectIdentity Disentanglement
dc.subjectResNet-18
dc.titleOrthoMAD: Morphing Attack Detection Through Orthogonal Identity Disentanglementen
dc.typeText/Conference Paper
gi.citation.endPage181
gi.citation.publisherPlaceBonn
gi.citation.startPage173
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
17-BIOSIG_2022_paper_62-2.pdf
Größe:
167.51 KB
Format:
Adobe Portable Document Format