Logo des Repositoriums
 

Efficient Supervision for Robot Learning Via Imitation, Simulation, and Adaptation

dc.contributor.authorWulfmeier, Markus
dc.date.accessioned2021-04-23T09:28:39Z
dc.date.available2021-04-23T09:28:39Z
dc.date.issued2019
dc.description.abstractRecent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.de
dc.identifier.doi10.1007/s13218-019-00587-0
dc.identifier.pissn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-019-00587-0
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36259
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 33, No. 4
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectData efficiency
dc.subjectDomain adaptation
dc.subjectInverse Reinforcement learning
dc.subjectSim2Real
dc.subjectTransfer learning
dc.titleEfficient Supervision for Robot Learning Via Imitation, Simulation, and Adaptationde
dc.typeText/Journal Article
gi.citation.endPage405
gi.citation.startPage401

Dateien