Logo des Repositoriums
 

Increasing Reliability in FDM Manufacturing

dc.contributor.authorHeider, Michael
dc.contributor.editorDraude, Claude
dc.contributor.editorLange, Martin
dc.contributor.editorSick, Bernhard
dc.date.accessioned2019-08-27T13:00:25Z
dc.date.available2019-08-27T13:00:25Z
dc.date.issued2019
dc.description.abstractAdditive Manufacturing machines following the Fused Deposition Modelling process can rapidly produce wide varieties of parts. A 3D computer model is divided into instructions the FDM machine uses to produce the part layer by layer. Numerous parameters can be modified to improve the instructions generated and extensive research is being performed into determining optimal parameters. Due to the complexity of the process and limited available data about influence factors, that might change over the duration of manufacturing, some produced parts have subpar quality or fail to be produced at all. An early automated detection that the resulting part will not be inside the preset quality tolerances could save substantial resources by not finishing production on those parts. Furthermore it might be possible to utilise machine learning techniques such as XCS to adaptively change instructions during printing as to return the part into the accepted parameter range.en
dc.identifier.doi10.18420/inf2019_ws52
dc.identifier.isbn978-3-88579-689-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25088
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-295
dc.subjectAdditive Manufacturing
dc.subjectMachine Learning
dc.subjectQuality Control
dc.titleIncreasing Reliability in FDM Manufacturingen
dc.typeText/Conference Paper
gi.citation.endPage491
gi.citation.publisherPlaceBonn
gi.citation.startPage483
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleOrganic Computing Doctoral Dissertation Colloquium

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper11_02.pdf
Größe:
140.73 KB
Format:
Adobe Portable Document Format