Logo des Repositoriums
 

Converting data organised for visual perception into machine-readable formats

dc.contributor.authorAue, Alexander
dc.contributor.authorAckermann, Andrea
dc.contributor.authorRöder, Norbert
dc.date.accessioned2024-04-08T11:56:33Z
dc.date.available2024-04-08T11:56:33Z
dc.date.issued2024
dc.description.abstractSpreadsheets are used to store an extraordinary amount of important data. The fact that spreadsheets are both easy to use and allow users a great deal of flexibility in how they store their data is a significant reason why they are so popular. Users often use a variety of layout techniques to make the data easy for humans to understand. But this layout also creates problems for traditional Extract-Transform-Load (ETL) tools. We propose a program that allows users to easily extract data from Excel files by selecting the cells containing the data and metadata thereby determining the data hierarchy. We have used this program to extract data of the Agricultural Structure Survey on land use and livestock in Germany, which does not follow a nationwide standard, leading to large differences in the structuring of the data between the federal states, making it a good benchmark.en
dc.identifier.isbn978-3-88579-738-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43869
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft
dc.relation.ispartofseriesLecture Notes in Informatics(LNI) - Proceedings, Volume P - 344
dc.subjectsemi-structured data
dc.subjectETL
dc.subjectno-code
dc.subjectExcel
dc.subjectspreadsheets
dc.subjectdata harmonisation
dc.titleConverting data organised for visual perception into machine-readable formatsen
dc.typeText/Conference Paper
gi.citation.endPage184
gi.citation.publisherPlaceBonn
gi.citation.startPage179
gi.conference.date27.-28. Februar 2037
gi.conference.locationStuttgart
gi.conference.reviewfull

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
GIL_2024_Aue_179-184.pdf
Größe:
700.32 KB
Format:
Adobe Portable Document Format