Konferenzbeitrag
Identification of cancer and cell-cycle genes with protein interactions and literature mining
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2009
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Gene prioritization based on background knowledge mined from literature has become an important method for the analysis of results from high-throughput experimental assays such as gene expression microarrays, RNAi screens and genomewide association studies. We apply our gene mention identifier, which achieved the best result of over 80% in the BioCreative II text-mining challenge [HPR+08], and show how text-mined associations can be complemented using guilt-by-association on high confidence protein interaction networks. First, we predict hand-curated gene-disease relationships in the OMIM database, Entrez Gene summaries and GeneRIFs with 37% success rate. Second, we confirm 24% of novel cell-cycle genes identified in a recent RNAi screen [KPH+07] by using text-mining and high confidence protein interactions. Moreover, we show how 71% of GOA cell-cycle annotations can be automatically recovered. Third, we devise a method to rank genes based on novelty, increasing interest, impact, and popularity.