Logo des Repositoriums
 

Robotic Process Automation in Public Administrations

dc.contributor.authorHouy, Constantin
dc.contributor.authorHamberg, Maarten
dc.contributor.authorFettke, Peter
dc.contributor.editorRäckers, Michael
dc.contributor.editorHalsbenning, Sebastian
dc.contributor.editorRätz, Detlef
dc.contributor.editorRichter, David
dc.contributor.editorSchweighofer, Erich
dc.date.accessioned2019-02-22T12:37:10Z
dc.date.available2019-02-22T12:37:10Z
dc.date.issued2019
dc.description.abstractAgainst the background of current activities towards administrative modernization based on the digitalization of processes, the usage and integration of Robotic Process Automation (RPA) software into public administration work processes can significantly improve their efficiency, reduce process costs and provide better services for citizens. This paper presents and investigates the concept of RPA and discusses the particular potential and challenges of RPA in the public administration context. Furthermore, it demonstrates an application example of a new cognitive RPA approach for automated data extraction and processing that is used in a trade tax assessment scenario using deep convolutional neural networks (CNN). Based on the findings it can be concluded that RPA has considerable potential for the improvement of the efficiency of admini­strative work processes and for administrative modernization in general.en
dc.identifier.isbn978-3-88579-685-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20517
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDigitalisierung von Staat und Verwaltung
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-291
dc.subjectRobotic Process Automation
dc.subjectRPA
dc.subjectCognitive RPA
dc.subjectBusiness Process Management
dc.subjectBPM
dc.subjectDeep Learning
dc.subjectConvolutional Neural Networks
dc.titleRobotic Process Automation in Public Administrationsen
dc.typeText/Conference Paper
gi.citation.endPage74
gi.citation.publisherPlaceBonn
gi.citation.startPage62
gi.conference.date6.-7. März 2019
gi.conference.locationMünster

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
ftvi2019_5.pdf
Größe:
271.28 KB
Format:
Adobe Portable Document Format