Logo des Repositoriums
 
Konferenzbeitrag

Fingervein Sample Image Quality Assessment using Natural Scene Statistics

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Natural Scene Statistics as used in non-reference image quality measures are proposed to be used as fingervein sample quality indicators. While NIQE and BRISQUE trained on common images with usual distortions do not work well in the fingervein quality context, their variants being trained on high and low quality fingervein sample data behave as expected from a biometric quality estimator. Experiments involve two publicly available fingervein datasets and two distinct template representations. The proposed (trained) quality measures are compared to a set of classical fingervein quality metrics which underlines their highly promising behaviour.

Beschreibung

Oliver Remy, Jutta Hämmerle-Uhl and Andreas Uhl (2022): Fingervein Sample Image Quality Assessment using Natural Scene Statistics. BIOSIG 2022. DOI: 10.1109/BIOSIG55365.2022.9896974. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5476. ISBN: 978-3-88579-723-4. pp. 89-100. Regular Research Papers. Darmstadt. 14.-16. September 2022

Zitierform

Tags