Logo des Repositoriums
 

Synthetic Latent Fingerprint Generation Using Style Transfer

dc.contributor.authorAmol S Joshi, Ali Dabouei
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira, Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2023-12-12T10:46:48Z
dc.date.available2023-12-12T10:46:48Z
dc.date.issued2023
dc.description.abstractLimited data availability is a challenging problem in the latent fingerprint domain. Synthetically generated fingerprints are vital for training data-hungry neural network-based algorithms. Conventional methods distort clean fingerprints to generate synthetic latent fingerprints. We propose a simple and effective approach using style transfer and image blending to synthesize realistic latent fingerprints. Our evaluation criteria and experiments demonstrate that the generated synthetic latent fingerprints preserve the identity information from the input contact-based fingerprints while possessing similar characteristics as real latent fingerprints. Additionally, we show that the generated fingerprints exhibit several qualities and styles, suggesting that the proposed method can generate multiple samples from a single fingerprint.en
dc.identifier.isbn978-3-88579-733-3
dc.identifier.issn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43287
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-339
dc.subjectSyhtetic data for biometrics
dc.subjectBiometric and multimedia forensics
dc.titleSynthetic Latent Fingerprint Generation Using Style Transferen
dc.typeText/Conference Paper
mci.conference.date20.-22. September 2023
mci.conference.locationDarmstadt
mci.conference.sessiontitleRegular Research Papers
mci.reference.pages69-78

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
LNI_026.pdf
Größe:
4.65 MB
Format:
Adobe Portable Document Format