Logo des Repositoriums
 

A comparative study of RGB and multispectral imaging for weed detection in precision agriculture

dc.contributor.authorBenedikt Fischer, Pascal Gauweiler
dc.date.accessioned2024-04-08T11:56:33Z
dc.date.available2024-04-08T11:56:33Z
dc.date.issued2024
dc.description.abstractPrecision agriculture and specifically mechanical weed control systems have the potential to positively impact our environment by reducing the use of herbicides. In recent years, multispectral cameras have become more and more accessible, which raises the question whether the additional costs of such cameras are worth the potential benefits. In this study, we recorded and annotated a multispectral instance segmentation dataset for sugar beet crop and weed detection. We trained Mask-RCNN models on the RGB and multispectral data in a transfer learning approach and extensively evaluated and compared the results for different scenarios. We found that the multispectral data can improve the weed detection performance significantly in many cases.en
dc.identifier.doi10.18420/giljt2024_60
dc.identifier.isbn978-3-88579-738-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43878
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft
dc.relation.ispartofseriesLecture Notes in Informatics(LNI) - Proceedings, Volume P - 344
dc.subjectmultispectral imaging
dc.subjectprecision agriculture
dc.subjectmachine learning
dc.subjectobject detection
dc.titleA comparative study of RGB and multispectral imaging for weed detection in precision agricultureen
dc.typeText/Conference Paper
gi.citation.endPage232
gi.citation.publisherPlaceBonn
gi.citation.startPage227
gi.conference.date27.-28. Februar 2024
gi.conference.locationStuttgart
gi.conference.reviewfull

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2024_Fischer_227-232.pdf
Größe:
295.79 KB
Format:
Adobe Portable Document Format