Logo des Repositoriums
 

Towards a User-Empowering Architecture for Trustability Analytics

dc.contributor.authorBruchhaus, Sebastian
dc.contributor.authorReis, Thoralf
dc.contributor.authorBornschlegl, Marco Xaver
dc.contributor.authorStörl, Uta
dc.contributor.authorHemmje, Matthias
dc.contributor.editorKönig-Ries, Birgitta
dc.contributor.editorScherzinger, Stefanie
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2023-02-23T14:00:11Z
dc.date.available2023-02-23T14:00:11Z
dc.date.issued2023
dc.description.abstractMachine learning (ML) thrives on big data like huge data sets and streams from IOT devices. Those technologies are becoming increasingly commonplace in our day to day existence. Learning autonomous intelligent actors (AIAs) impact our lives already in the form of, e.g. chat bots, medical expert systems, and facial recognition systems. Doubts concerning ethical, legal, and social implications of such AIAs become increasingly compelling in consequence. Our society now finds itself confronted with decisive questions: Should we trust AI? Is it fair, transparent, and respecting privacy? An individual psychological threshold for cooperation with AIAs has been postulated. In Shaefer’s words: “No trust, no use”. On the other hand, ignorance of an AIA’s weak points and idiosyncrasies can lead to overreliance. This paper proposes a prototypical microservice architecture for trustability analytics. Its architecture shall introduce self-awareness concerning trustability into the AI2VIS4BigData reference model for big data analysis and visualization by borrowing the concept of a “looking-glass self” from psychology.en
dc.identifier.doi10.18420/BTW2023-60
dc.identifier.isbn978-3-88579-725-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40369
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBTW 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-331
dc.subjectTrust
dc.subjectMachine Learning
dc.subjectDigital Humanities
dc.subjectFoundation Model
dc.subjectTransparency
dc.subjectXAI
dc.titleTowards a User-Empowering Architecture for Trustability Analyticsen
dc.typeText/Conference Paper
gi.citation.endPage914
gi.citation.publisherPlaceBonn
gi.citation.startPage901
gi.conference.date06.-10. März 2023
gi.conference.locationDresden, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C2-8.pdf
Größe:
481.37 KB
Format:
Adobe Portable Document Format