Logo des Repositoriums
 

Search Challenges in Natural Language Generation with Complex Optimization Objectives

dc.contributor.authorDemberg, Vera
dc.contributor.authorHoffmann, Jörg
dc.contributor.authorHowcroft, David M.
dc.contributor.authorKlakow, Dietrich
dc.contributor.authorTorralba, Álvaro
dc.date.accessioned2018-01-08T09:22:58Z
dc.date.available2018-01-08T09:22:58Z
dc.date.issued2016
dc.description.abstractAutomatic natural language generation (NLG) is a difficult problem already when merely trying to come up with natural-sounding utterances. Ubiquituous applications, in particular companion technologies, pose the additional challenge of flexible adaptation to a user or a situation. This requires optimizing complex objectives such as information density, in combinatorial search spaces described using declarative input languages. We believe that AI search and planning is a natural match for these problems, and could substantially contribute to solving them effectively. We illustrate this using a concrete example NLG framework, give a summary of the relevant optimization objectives, and provide an initial list of research challenges.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11503
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 30, No. 1
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectNatural language processing
dc.subjectPlanning
dc.subjectSearch
dc.titleSearch Challenges in Natural Language Generation with Complex Optimization Objectives
dc.typeText/Journal Article
gi.citation.endPage69
gi.citation.startPage63

Dateien