Logo des Repositoriums
 

Geometric numerical integration of simple dynamical systems

dc.contributor.authorSchmitt, P. R.
dc.contributor.authorSteinmann, P.
dc.contributor.editorHagen, Hans
dc.contributor.editorHering-Bertram, Martin
dc.contributor.editorGarth, Christoph
dc.date.accessioned2017-09-23T07:01:43Z
dc.date.available2017-09-23T07:01:43Z
dc.date.issued2008
dc.description.abstractUnderstanding the behavior of a dynamical system is usually accomplished by visualization of its phase space portraits. Finite element simulations of dynamical systems yield a very high dimensionality of phase space, i.e. twice the number of nodal degrees of freedom. Therefore insight into phase space structure can only be gained by reduction of the model's dimensionality. The phase space of Hamiltonian systems is of particular interest because of its inherent geometric features namely being the co-tangent bundle of the configuration space of the problem and therefore having a natural symplectic structure. In this contribution a class of geometry preserving integrators based on Lie-groups and -algebras is presented which preserve these geometric features exactly. Examples of calculations for a simple dynamical system are detailed.en
dc.identifier.isbn978-3-88579-441-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/4616
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofVisualization of large and unstructured data sets
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-7
dc.titleGeometric numerical integration of simple dynamical systemsen
gi.citation.endPage124
gi.citation.publisherPlaceBonn
gi.citation.startPage115
gi.conference.date9. - 11. September 2007
gi.conference.locationKaiserslautern

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
115.pdf
Größe:
555.11 KB
Format:
Adobe Portable Document Format