Logo des Repositoriums
 

Empirical software metrics for benchmarking of verification tools

dc.contributor.authorDemyanova, Yulia
dc.contributor.authorPani, Thomas
dc.contributor.authorVeith, Helmut
dc.contributor.authorZuleger, Florian
dc.contributor.editorKnoop, Jens
dc.contributor.editorZdun, Uwe
dc.date.accessioned2017-06-21T07:37:18Z
dc.date.available2017-06-21T07:37:18Z
dc.date.issued2016
dc.description.abstractIn recent work [De15, PVZ15, DVZ13], we study empirical metrics for software (SW) source code, which can predict the performance of verification tools on specific types of SW. Our metrics comprise variable usage patterns, loop patterns, as well as indicators of control-flow complexity and are extracted by simple data-flow analyses. We demonstrate that our metrics are powerful enough to devise a machine-learning based portfolio solver for SW verification. We show that this portfolio solver would be the (hypothetical) overall winner of both the 2014 and 2015 International Competition on Software Verification (SV-COMP). This gives strong empirical evidence for the predictive power of our metrics and demonstrates the viability of portfolio solvers for SW verification.en
dc.identifier.isbn978-3-88579-646-6
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2016
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-252
dc.titleEmpirical software metrics for benchmarking of verification toolsen
dc.typeText/Conference Paper
gi.citation.endPage68
gi.citation.publisherPlaceBonn
gi.citation.startPage67
gi.conference.date23.-26. Februar 2016
gi.conference.locationWien

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
67.pdf
Größe:
34.34 KB
Format:
Adobe Portable Document Format