Logo des Repositoriums
 

Understanding German foresters’ intention to use drones

dc.contributor.authorMichels, Marius
dc.contributor.authorWever, Hendrik
dc.contributor.authorMußhoff, Oliver
dc.contributor.editorHoffmann, Christa
dc.contributor.editorStein, Anthony
dc.contributor.editorRuckelshausen, Arno
dc.contributor.editorMüller, Henning
dc.contributor.editorSteckel, Thilo
dc.contributor.editorFloto, Helga
dc.date.accessioned2023-02-21T15:14:10Z
dc.date.available2023-02-21T15:14:10Z
dc.date.issued2023
dc.description.abstractAs unmanned aerial vehicles or drones are a cost-effective tool for several forest management purposes, this is the first study investigating the use of drones for forestry purposes and identifies factors influencing foresters’ intention to use drones. By using partial least square structural equation modelling (PLS-SEM), an extended Technology Acceptance Model (TAM) was estimated to investigate factors influencing German foresters’ intention to use drones based on a sample with 215 foresters collected in 2022. The TAM explains 42% of the variation in the intention to use a drone of which perceived usefulness for forest management is the strongest predictor. The results are of interest to policy makers, extension services as well as practitioners.en
dc.identifier.isbn978-3-88579-724-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40284
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-330
dc.subjectdrone; digitalization; Technology Acceptance Model; Partial Least Squares Structural Equation Modelling; Unmanned Aerial Vehicle; forestry
dc.titleUnderstanding German foresters’ intention to use dronesen
dc.typeText/Conference Paper
gi.citation.endPage422
gi.citation.publisherPlaceBonn
gi.citation.startPage417
gi.conference.date13.-14. Februar 2023
gi.conference.locationOsnabrück

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2023_Michels_417-422.pdf
Größe:
402.56 KB
Format:
Adobe Portable Document Format