Konferenzbeitrag
On reducing the effect of silhouette quality on individual gait recognition: a feature fusion approach
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2015
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
The quality of the extracted gait silhouettes can hinder the performance and practicability of gait recognition algorithms. In this paper, we propose a framework that integrates a feature fusion approach to improve recognition rate under this situation. Specifically, we first generate a dataset containing gait silhouettes with various qualities based on the CASIA Dataset B. We then fuse gallery data with different qualities and project data into embedded subspaces. We perform classification based on the Euclidean distances between fused gallery features and probe features. Experimental results show that the proposed framework can provide important improvements on recognition rate.