Logo des Repositoriums
 

GPU-based regression analysis on sparse grids

dc.contributor.authorHirschmann, Steffen
dc.contributor.editorPlödereder, E.
dc.contributor.editorGrunske, L.
dc.contributor.editorSchneider, E.
dc.contributor.editorUll, D.
dc.date.accessioned2017-07-26T11:00:00Z
dc.date.available2017-07-26T11:00:00Z
dc.date.issued2014
dc.description.abstractPrediction and forecasting has become very important in modern society. Regression analysis enables to predict easily based on given data. This paper focuses on regression analysis on sparse grids using the existing toolbox Sparse Grid ++ (SG++). The core workload of the regression analysis will be implemented on graphics cards using NVIDIA's Compute Unified Device Architecture (CUDA). Therefore, we give guidance how to get high performance when dealing with this particular problem using CUDA enabled graphics cards. We also focus on problems where the datasets are larger than the available device memory. Finally, we present test results for real-world and artificial datasets.en
dc.identifier.isbn978-3-88579-626-8
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofInformatik 2014
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-232
dc.titleGPU-based regression analysis on sparse gridsen
dc.typeText/Conference Paper
gi.citation.endPage2436
gi.citation.publisherPlaceBonn
gi.citation.startPage2425
gi.conference.date22.-26. September 2014
gi.conference.locationStuttgart

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
2425.pdf
Größe:
126.04 KB
Format:
Adobe Portable Document Format