Logo des Repositoriums
 

Data Analytics with Graph Algorithms – A Hands-on Tutorial with Neo4J

dc.contributor.authorWiese, Lena
dc.contributor.editorMeyer, Holger
dc.contributor.editorRitter, Norbert
dc.contributor.editorThor, Andreas
dc.contributor.editorNicklas, Daniela
dc.contributor.editorHeuer, Andreas
dc.contributor.editorKlettke, Meike
dc.date.accessioned2019-04-15T11:40:35Z
dc.date.available2019-04-15T11:40:35Z
dc.date.issued2019
dc.description.abstractThis tutorial presents perspectives for advanced graph data analytics and covers the background of graph data management in modern data stores. It provides an overview of several well-established graph algorithms. The three categories covered are path-based algorithms, community detection and centrality scores. A deeper understanding of graph algorithms is a major precondition to efficiently analyze graph-structured data. The tutorial hence enables participants to achieve an informed decision about what kind of algorithm is appropriate for which use case.en
dc.identifier.doi10.18420/btw2019-ws-26
dc.identifier.isbn978-3-88579-684-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/21813
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2019 – Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) – Proceedings, Volume P-290
dc.titleData Analytics with Graph Algorithms – A Hands-on Tutorial with Neo4Jen
gi.citation.endPage261
gi.citation.startPage259
gi.conference.date4.-8. März 2019
gi.conference.locationRostock
gi.conference.sessiontitleTutorienprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
E1-1.pdf
Größe:
143.77 KB
Format:
Adobe Portable Document Format