Logo des Repositoriums
 
Konferenzbeitrag

Knowledge-Based Short Text Categorization Using Entity and Category Embedding

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Short text categorization is an important task due to the rapid growth of online available short texts in various domains such as web search snippets, news feeds, etc. Most of the traditional methods suffer from sparsity and shortness of the text. Moreover, supervised learning methods require a significant amount of training data and manually labeling such data can be very time-consuming and costly. In this study, we propose a novel probabilistic model for Knowledge-Based Short Text Categorization (KBSTC), which does not require any labeled training data to categorize a short text [Tü].

Beschreibung

Türker, Rima; Zhang, Lei; Koutraki, Maria; Sack, Harald (2019): Knowledge-Based Short Text Categorization Using Entity and Category Embedding. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_45. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 283-284. Data Science. Kassel. 23.-26. September 2019

Zitierform

Tags