Konferenzbeitrag
Knowledge-Based Short Text Categorization Using Entity and Category Embedding
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2019
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Short text categorization is an important task due to the rapid growth of online available short texts in various domains such as web search snippets, news feeds, etc. Most of the traditional methods suffer from sparsity and shortness of the text. Moreover, supervised learning methods require a significant amount of training data and manually labeling such data can be very time-consuming and costly. In this study, we propose a novel probabilistic model for Knowledge-Based Short Text Categorization (KBSTC), which does not require any labeled training data to categorize a short text [Tü].