Logo des Repositoriums
 

Understanding and Predicting Typed Links in Issue Tracking Systems

dc.contributor.authorLüders, Clara Marie
dc.contributor.authorBouraffa, Abir
dc.contributor.authorPietz, Tim
dc.contributor.authorMaalej, Walid
dc.contributor.editorEngels, Gregor
dc.contributor.editorHebig, Regina
dc.contributor.editorTichy, Matthias
dc.date.accessioned2023-01-18T13:38:46Z
dc.date.available2023-01-18T13:38:46Z
dc.date.issued2023
dc.description.abstractThis talk summarizes two recent papers: “Beyond Duplicates: Towards Understanding and Predicting Link Types in Issue Tracking Systems” accepted at MSR 2022, and “Automated Detection of Typed Links in Issue Trackers” accepted at RE 2022. In issue trackers like JIRA, stakeholders connect issues via links of certain types, such as Epic-, Block-, Duplicate-, or Relate-links. While previous research focused on Duplicate-links, we aim at understanding and predicting other link types. In the MSR paper, we studied issues linking in 15 public JIRA repositories. We evaluated the robustness of state-of-the-art duplicate detection approaches on our dataset with diversified link types. We found that current deep-learning approaches confuse duplicates and other links. Extending the training sets with other link types partly solves this problem. In the RE paper, we trained and evaluated various machine learning models to detect typed links. We found that a BERT model trained on titles and descriptions of linked issues outperforms other deep learning models, achieving an average macro F1-score of 0.64. We also studied what impacts the prediction performance and found that this depends on how repositories are used (e.g. linking quality) and by whom.en
dc.identifier.isbn978-3-88579-726-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40097
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-332
dc.subjectIssue Tracking System
dc.subjectTyped Link Detection
dc.subjectDependency Management
dc.subjectDeep Learning
dc.titleUnderstanding and Predicting Typed Links in Issue Tracking Systemsen
dc.typeText/Conference Paper
gi.citation.endPage90
gi.citation.publisherPlaceBonn
gi.citation.startPage89
gi.conference.date20.–24. Februar 2023
gi.conference.locationPaderborn
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper31.pdf
Größe:
164.62 KB
Format:
Adobe Portable Document Format