Autonomous Data Ingestion Tuning in Data Warehouse Accelerators
dc.contributor.author | Stolze, Knut | |
dc.contributor.author | Beier, Felix | |
dc.contributor.author | Müller, Jens | |
dc.contributor.editor | Mitschang, Bernhard | |
dc.contributor.editor | Nicklas, Daniela | |
dc.contributor.editor | Leymann, Frank | |
dc.contributor.editor | Schöning, Harald | |
dc.contributor.editor | Herschel, Melanie | |
dc.contributor.editor | Teubner, Jens | |
dc.contributor.editor | Härder, Theo | |
dc.contributor.editor | Kopp, Oliver | |
dc.contributor.editor | Wieland, Matthias | |
dc.date.accessioned | 2017-06-20T20:24:37Z | |
dc.date.available | 2017-06-20T20:24:37Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The IBM DB2 Analytics Accelerator (IDAA) is a state-of-the art hybrid database system that seamlessly extends the strong transactional capabilities of DB2 for z/OS with very fast processing of OLAP and analytical SQL workload in Netezza. IDAA copies the data from DB2 for z/OS into its Netezza backend, and customers can tailor data maintenance according to their needs. This copy process, the data load, can be done on a whole table or just a physical table partition. IDAA also o ers an incremental update feature, which employs replication technologies for low-latency data synchronization. The accelerator targets big relational databases with several TBs of data. Therefore, the data load is performance-critical, not only for the data transfer itself, but the system has to be able to scale up to a large number of tables, i. e., tens of thousands to be loaded at the same time, as well. The administrative overhead for such a number of tables has to be minimized. In this paper, we present our work on a prototype, which is geared towards e ciently loading data for many tables, where each table may store only a comparably small amount of data. A new load scheduler has been introduced for handling all concurrent load requests for disjoint sets of tables. That is not only required for a multi-tenant setup, but also a significant improvement for attaching an accelerator to a single DB2 for z/OS system. In this paper, we present architecture and implementation aspects of the new and improved load mechanism and results of some initial performance evaluations. | de |
dc.identifier.isbn | 978-3-88579-659-6 | |
dc.identifier.pissn | 1617-5468 | |
dc.language.iso | de | |
dc.publisher | Gesellschaft für Informatik, Bonn | |
dc.relation.ispartof | Datenbanksysteme für Business, Technologie und Web (BTW 2017) | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-265 | |
dc.title | Autonomous Data Ingestion Tuning in Data Warehouse Accelerators | de |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 532 | |
gi.citation.startPage | 531 | |
gi.conference.date | 6.-10. März 2017 | |
gi.conference.location | Stuttgart | |
gi.conference.sessiontitle | Industrial Program - Data Lake |
Dateien
Originalbündel
1 - 1 von 1