Logo des Repositoriums
 

Comparing the Performance of Data Processing Implementations

dc.contributor.authorBeierlieb, Lukas
dc.contributor.authorIffländer, Lukas
dc.contributor.authorPrantl, Thomas
dc.contributor.authorKounev, Samuel
dc.contributor.editorHerrmann, Andrea
dc.date.accessioned2023-11-30T08:32:48Z
dc.date.available2023-11-30T08:32:48Z
dc.date.issued2023
dc.description.abstractThis paper compares the execution speed of R, Python, and Rust implementations in the context of data processing. A real-world data processing task in the form of an aggregation of benchmark measure ment results was implemented in each language, and the execution times were measured. Rust and Python showed significantly superior performance compared to the R implementation. Further, we compared the results of different Python interpreters (the most recent versions of CPython and PyPy), also resulting in measurable variations. Finally, a study of the effectiveness of multithreading was performed.en
dc.identifier.issn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43248
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 43, Heft 4
dc.relation.ispartofseriesSoftwaretechnik-Trends
dc.subjectSPP
dc.subjectbenchmark
dc.subjectsoftware performance
dc.subjectdata processing
dc.subjectpython
dc.subjectR language
dc.subjectrust
dc.titleComparing the Performance of Data Processing Implementationsen
dc.typeText/Conference Paper
mci.conference.date6-8 November 2023
mci.conference.locationKarlsruhe, Germany
mci.conference.sessiontitle14th Symposium on Software Performance 2023
mci.reference.pages17-19

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SSP23_CR_5.pdf
Größe:
217.35 KB
Format:
Adobe Portable Document Format