Konferenzbeitrag
Classifying documents by distributed P2P clustering
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2003
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Clustering documents into classes is an important task in many Information Retrieval (IR) systems. This achieved grouping enables a description of the contents of the document collection in terms of the classes the documents fall into. The compactness of such a description is even more desirable in cases where the document collection is spread across different computers and locations; document classes can then be used to describe each partial document collection in a conveniently short form that can easily be exchanged with other nodes on the network. Unfortunately, most clustering schemes cannot easily be distributed. Additionally, the costs of transferring all data to a central clustering service are prohibitive in large-scale systems. In this paper, we introduce an approach which is capable of classifying documents that are distributed across a Peer-to-Peer (P2P) network. We present measurements taken on a P2P network using synthetic and real-world data sets.