Deep Sparse Feature Selection and Fusion for Textured Contact Lens Detection
dc.contributor.author | Poster, Domenick | |
dc.contributor.author | Nasrabadi, Nasser | |
dc.contributor.author | Riggan, Benjamin | |
dc.contributor.editor | Brömme, Arslan | |
dc.contributor.editor | Busch, Christoph | |
dc.contributor.editor | Dantcheva, Antitza | |
dc.contributor.editor | Rathgeb, Christian | |
dc.contributor.editor | Uhl, Andreas | |
dc.date.accessioned | 2019-06-17T10:00:28Z | |
dc.date.available | 2019-06-17T10:00:28Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Distinguishing between images of irises wearing textured lenses versus those wearing transparent lenses or no lenses is a challenging problem due to the subtle and fine-grained visual differences. Our approach builds upon existing hand-crafted image features and neural network architectures by optimally selecting and combining the most useful set of features into a single model. We build multiple, parallel sub-networks corresponding to the various feature descriptors and learn the best subset of features through group sparsity. We avoid overfitting such a wide and deep model through a selective transfer learning technique and a novel group Dropout regularization strategy. This model achieves roughly a four times increase in performance over the state-of-the-art on three benchmark textured lens datasets and equals the near-perfect state-of-the-art accuracy on two others. Furthermore, the generic nature of the architecture allows it to be extended to other image features, forms of spoofing attacks, or problem domains. | en |
dc.identifier.isbn | 978-3-88579-676-4 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/23808 | |
dc.language.iso | en | |
dc.publisher | Köllen Druck+Verlag GmbH | |
dc.relation.ispartof | BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-283 | |
dc.subject | feature selection | |
dc.subject | feature fusion | |
dc.subject | group sparsity | |
dc.subject | iris liveness detection | |
dc.subject | textured contact lens detection | |
dc.title | Deep Sparse Feature Selection and Fusion for Textured Contact Lens Detection | en |
dc.type | Text/Conference Paper | |
gi.citation.publisherPlace | Bonn | |
gi.conference.date | 26.-28. September 2018 | |
gi.conference.location | Darmstadt |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- BIOSIG_2018_paper_38.pdf
- Größe:
- 466.68 KB
- Format:
- Adobe Portable Document Format