Logo des Repositoriums
 

Comparing Relevance Feedback Techniques on German News Articles

dc.contributor.authorRomberg, Julia
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorNicklas, Daniela
dc.contributor.editorLeymann, Frank
dc.contributor.editorSchöning, Harald
dc.contributor.editorHerschel, Melanie
dc.contributor.editorTeubner, Jens
dc.contributor.editorHärder, Theo
dc.contributor.editorKopp, Oliver
dc.contributor.editorWieland, Matthias
dc.date.accessioned2017-06-21T11:24:40Z
dc.date.available2017-06-21T11:24:40Z
dc.date.issued2017
dc.description.abstractWe draw a comparison on the behavior of several relevance feedback techniques on a corpus of German news articles. In contrast to the standard application of relevance feedback, no explicit user query is given and the main goal is to recognize a user’s preferences and interests in the examined data collection. The compared techniques are based on vector space models and probabilistic models. The results show that the performance is category-dependent on our data and that overall the vector space approach Ide performs best.en
dc.identifier.isbn978-3-88579-660-2
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-266
dc.subjectRelevance Feedback
dc.subjectText Mining
dc.subjectFiltering Systems
dc.titleComparing Relevance Feedback Techniques on German News Articlesen
dc.typeText/Conference Paper
gi.citation.endPage310
gi.citation.publisherPlaceBonn
gi.citation.startPage301
gi.conference.date6.-10. März 2017
gi.conference.locationStuttgart
gi.conference.sessiontitleStudierendenprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper35.pdf
Größe:
281.69 KB
Format:
Adobe Portable Document Format