Logo des Repositoriums
 
Zeitschriftenartikel

Predictive End-to-End Enterprise Process Network Monitoring

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Springer

Zusammenfassung

Ever-growing data availability combined with rapid progress in analytics has laid the foundation for the emergence of business process analytics. Organizations strive to leverage predictive process analytics to obtain insights. However, current implementations are designed to deal with homogeneous data. Consequently, there is limited practical use in an organization with heterogeneous data sources. The paper proposes a method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks to overcome this limitation. A case study performed with a medium-sized German manufacturing company highlights the method’s utility for organizations.

Beschreibung

Oberdorf, Felix; Schaschek, Myriam; Weinzierl, Sven; Stein, Nikolai; Matzner, Martin; Flath, Christoph M. (2023): Predictive End-to-End Enterprise Process Network Monitoring. Business & Information Systems Engineering: Vol. 65, No. 1. DOI: 10.1007/s12599-022-00778-4. Springer. PISSN: 1867-0202. pp. 49-64

Zitierform

Tags