Logo des Repositoriums
 

N-shot Palm Vein Verification Using Siamese Networks

dc.contributor.authorMarattukalam, Felix
dc.contributor.authorAbdulla, Waleed H.
dc.contributor.authorSwain, Akshya
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDamer, Naser
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira, Ana
dc.contributor.editorUhl, Andreas
dc.date.accessioned2021-10-04T08:43:50Z
dc.date.available2021-10-04T08:43:50Z
dc.date.issued2021
dc.description.abstractThe use of deep learning methods to extract vascular biometric patterns from the palm surface has been of interest among researchers in recent years. In many biometric recognition tasks, there is a limit in the number of training samples. This is because of limited vein biometric databases being available for research. This restricts the application of deep learning methods to design algorithms that can effectively identify or authenticate people for vein recognition. This paper proposes an architecture using Siamese neural network structure for few shot palm vein verification. The proposed network uses images from both the palms and consists of two sub-nets that share weights to identify a person. The architecture’s performance was tested on the HK PolyU multi spectral palm vein database with limited samples. The results suggest that the method is effective since it has 91.9% precision, 91.1% recall, 92.2% specificity, 91.5% F1-Score, and 90.5% accuracy values.en
dc.identifier.isbn978-3-88579-709-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37467
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectPalm Vein Verification
dc.subjectbiometrics
dc.subjectSiamese neural network
dc.subjectfew- shot learning
dc.titleN-shot Palm Vein Verification Using Siamese Networksen
dc.typeText/Conference Paper
gi.citation.endPage292
gi.citation.publisherPlaceBonn
gi.citation.startPage285
gi.conference.date15.-17. September 2021
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
biosig2021_proceedings_31.pdf
Größe:
165.96 KB
Format:
Adobe Portable Document Format