Logo des Repositoriums
 

Detecting Quality Problems in Research Data: A Model-Driven Approach

dc.contributor.authorKesper, Arno
dc.contributor.authorWenz, Viola
dc.contributor.authorTaentzer, Gabriele
dc.contributor.editorKoziolek, Anne
dc.contributor.editorSchaefer, Ina
dc.contributor.editorSeidl, Christoph
dc.date.accessioned2020-12-17T11:57:51Z
dc.date.available2020-12-17T11:57:51Z
dc.date.issued2021
dc.description.abstractThe quality of research data is essential for scientific progress. A major challenge in data quality assurance is the localisation of quality problems that are inherent to data. Based on the observation of a dynamic shift in the database technologies employed, we present a model-driven approach to analyse the quality of research data. It allows a data engineer to formulate anti-patterns that are generic concerning the database format and technology. A domain expert chooses a pattern that has been adapted to a specific database technology and concretises it for a domain-specific database format. The resulting concrete pattern is used by a data analyst to locate quality problems in the database. As a proof of concept, we implemented tool support that realises this approach for XML databases. We evaluated our approach concerning expressiveness and performance. The original paper has been published at the International Conference on Model Driven Engineering Languages and Systems 2020.en
dc.identifier.doi10.18420/SE2021_19
dc.identifier.isbn978-3-88579-704-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34513
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2021
dc.relation.ispartofseriesecture Notes in Informatics (LNI) - Proceedings, Volume P-310
dc.subjectData quality
dc.subjectModel-driven development
dc.subjectPattern matching
dc.titleDetecting Quality Problems in Research Data: A Model-Driven Approachen
dc.typeText/ConferencePaper
gi.citation.endPage62
gi.citation.publisherPlaceBonn
gi.citation.startPage61
gi.conference.date22.-26. Februar 2021
gi.conference.locationBraunschweig/Virtuell

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B1-18.pdf
Größe:
135.82 KB
Format:
Adobe Portable Document Format