Logo des Repositoriums
 

Averaging rewards as a first approach towards Interpolated Experience Replay

dc.contributor.authorPilar von Pilchau, Wenzel
dc.contributor.editorDraude, Claude
dc.contributor.editorLange, Martin
dc.contributor.editorSick, Bernhard
dc.date.accessioned2019-08-27T13:00:25Z
dc.date.available2019-08-27T13:00:25Z
dc.date.issued2019
dc.description.abstractReinforcement learning and especially deep reinforcement learning are research areas which are getting more and more attention. The mathematical method of interpolation is used to get information of data points in an area where only neighboring samples are known and thus seems like a good expansion for the experience replay which is a major component of a variety of deep reinforcement learning methods. Interpolated experiences stored in the experience replay could speed up learning in the early phase and reduce the overall amount of exploration needed. A first approach of averaging rewards in a setting with unstable transition function and very low exploration is implemented and shows promising results that encourage further investigation.en
dc.identifier.doi10.18420/inf2019_ws53
dc.identifier.isbn978-3-88579-689-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25089
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-295
dc.subjectExperience Replay
dc.subjectDeep Q-Network
dc.subjectDeep Reinforcement Learning
dc.subjectInterpolation
dc.subjectMachine Learning
dc.subjectOrganic Computing
dc.titleAveraging rewards as a first approach towards Interpolated Experience Replayen
dc.typeText/Conference Paper
gi.citation.endPage506
gi.citation.publisherPlaceBonn
gi.citation.startPage493
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleOrganic Computing Doctoral Dissertation Colloquium

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper11_03.pdf
Größe:
275.51 KB
Format:
Adobe Portable Document Format