Logo des Repositoriums
 

ChildFace: Gender Aware Child Face Aging

dc.contributor.authorChandaliya, Praveen Kumar
dc.contributor.authorSinha, Aditya
dc.contributor.authorNain, Neeta
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-16T08:25:46Z
dc.date.available2020-09-16T08:25:46Z
dc.date.issued2020
dc.description.abstractChild face aging and rejuvenation has amassed considerable active research interest due to its immense impact on monitoring applications especially for finding lost/abducted children with childhood photos and hence protect children. Prior studies are primarily motivated to enhance the generation quality and aging of face images, rather than quantifying face recognition performance. To address this challenge we propose ChildFace model. Our model does child face aging and rejuvenation while using gender as condition. Our model uses Conditional Generative Adversarial Nets (cGANs), VGG19 based perceptual loss and LightCNN29 age classifier and produces impressive results. Intense quantitative study based on verification, identification and age estimation proves that our model is competent to existing state-of-art models and can make a significant contribution in identifying missing children.en
dc.identifier.isbn978-3-88579-700-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34335
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-306
dc.subjectChild Face Aging
dc.subjectGenerative Model
dc.subjectFace Recognition
dc.subjectAge estimation
dc.titleChildFace: Gender Aware Child Face Agingen
dc.typeText/Conference Paper
gi.citation.endPage263
gi.citation.publisherPlaceBonn
gi.citation.startPage255
gi.conference.date16.-18. September 2020
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2020_paper_34_update3.pdf
Größe:
2.11 MB
Format:
Adobe Portable Document Format