Logo des Repositoriums
 

An Experimental Analysis of Different Key-Value Stores and Relational Databases

dc.contributor.authorGembalczyk, David
dc.contributor.authorSchuhknecht, Felix Martin
dc.contributor.authorDittrich, Jens
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorNicklas, Daniela
dc.contributor.editorLeymann, Frank
dc.contributor.editorSchöning, Harald
dc.contributor.editorHerschel, Melanie
dc.contributor.editorTeubner, Jens
dc.contributor.editorHärder, Theo
dc.contributor.editorKopp, Oliver
dc.contributor.editorWieland, Matthias
dc.date.accessioned2017-06-20T20:24:30Z
dc.date.available2017-06-20T20:24:30Z
dc.date.issued2017
dc.description.abstractNowadays, databases serve two main workloads: Online Transaction Processing (OLTP) and Online Analytic Processing (OLAP). For decades, relational databases dominated both areas. With the hype on NoSQL databases, the picture has changed. Initially designed as inter-process hash tables handling OLTP requested, some key-value store vendors have started to tackle the area of OLAP as well. Therefore, in this performance study, we compare the relational databases PostgreSQL, MonetDB, and HyPer with the key-value stores Redis and Aerospike in their write, read, and analytical capabilities. Based on the results, we investigate the reasons of the database’s respective advantages and disadvantages.en
dc.identifier.isbn978-3-88579-659-6
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2017)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-265
dc.subjectRelational Systems
dc.subjectKey-Value Stores
dc.subjectOLTP
dc.subjectOLAP
dc.subjectNoSQL
dc.subjectExperiments & Analysis
dc.titleAn Experimental Analysis of Different Key-Value Stores and Relational Databasesen
dc.typeText/Conference Paper
gi.citation.endPage260
gi.citation.startPage351
gi.conference.date6.-10. März 2017
gi.conference.locationStuttgart
gi.conference.sessiontitleCloud and Benchmarks

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper23.pdf
Größe:
372.37 KB
Format:
Adobe Portable Document Format