Logo des Repositoriums
 

Towards Model-Driven Engineering for Quantum AI

dc.contributor.authorMoin,Armin
dc.contributor.authorChallenger,Moharram
dc.contributor.authorBadii,Atta
dc.contributor.authorGünnemann,Stephan
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:11:02Z
dc.date.available2022-09-28T17:11:02Z
dc.date.issued2022
dc.description.abstractOver the past decade, Artificial Intelligence (AI) has provided enormous new possibilities and opportunities, but also new demands and requirements for software systems. In particular, Machine Learning (ML) has proven useful in almost every vertical application domain. In the decade ahead, an unprecedented paradigm shift from classical computing towards Quantum Computing (QC), with perhaps a quantum-classical hybrid model, is expected. We argue that the Model-Driven Engineering (MDE) paradigm can be an enabler and a facilitator, when it comes to the quantum and the quantum-classical hybrid applications. This includes not only automated code generation, but also automated model checking and verification, as well as model analysis in the early design phases, and model-to-model transformations both at the design-time and at the runtime. In this paper, the vision is focused on MDE for Quantum AI, particularly Quantum ML for the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) applications.en
dc.identifier.doi10.18420/inf2022_95
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39600
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectmodel-driven engineering
dc.subjectartificial intelligence
dc.subjectmachine learning
dc.subjectquantum computing
dc.subjectcyber-physical systems
dc.subjectinternet of things
dc.titleTowards Model-Driven Engineering for Quantum AIen
gi.citation.endPage1131
gi.citation.startPage1121
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleGI Quantum Computing Workshop

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
giquantum_02.pdf
Größe:
6.98 MB
Format:
Adobe Portable Document Format