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Abstract: Machine vision systems based on deep convolutional neural networks are increasingly
utilized in digital humanities projects, particularly in the context of art-historical and audiovisual
data. As research has shown, such systems are highly susceptible to bias. We propose that this is
not only due to their reliance on biased datasets but also because their perceptual topology, their
specific way of representing the visual world, gives rise to a new class of bias that we call perceptual
bias. Perceptual bias, we argue, affects almost all currently available “off-the-shelf” machine vision
systems, and is thus especially relevant for digital humanities applications, which often rely on such
systems for hypothesis building. We evaluate the nature and scope of perceptual bias by means of a
close reading of a visual analytics technique called “feature visualization” and propose to understand
the development of critical visual analytics techniques as an important (digital) humanities challenge,
situated at the interface of computer science and visual studies.

Keywords: machine learning; visual analytics; computer vision; bias; interpretability; digital art

history

1 Introduction

The susceptibility of machine learning systems to bias has recently become a prominent
field of study in many disciplines, most visibly at the intersection of computer science [Fr18]
and science and technology studies [Se19], but also in disciplines such as African American
studies [Be19]. As part of this development, machine vision has moved into the spotlight of
critique as well, particularly where it is used for socially charged applications like facial
recognition [BG18; Ga16]. In many critical investigations of machine vision, however, the
focus lies almost exclusively on dataset bias [CP19], and on fixing datasets by introducing
more, or more diverse sets of images [Me19]. In the following, we argue that this focus
on dataset bias in critical investigations of machine vision paints an incomplete picture,
metaphorically and literally. In the worst case, it increases trust in quick technological fixes
that fix (almost) nothing, while systemic failures continue to reproduce.

We propose that machine vision systems are often inherently biased not only because they
rely on biased datasets (which they do) but also because their perceptual topology, their
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specific way of representing the visual world, gives rise to a new class of bias that we call
perceptual bias. Concretely, we define perceptual topology as the set of those inductive
biases in machine vision systems that determine its capability to represent the visual world.
Perceptual bias, then, describes the difference between the assumed “ways of seeing” of
a machine vision system, our reasonable expectations regarding its way of representing
the visual world, and its actual perceptual topology. Research in computer science has
shown that the perceptual topologies of many commonly used machine vision systems are
surprisingly non-intuitive, and that their perceptual bias is thus surprisingly large.

We show how perceptual bias affects the interpretability of machine vision systems in
particular, by means of a close reading of a visual analytics technique called “feature
visualization” [Er09]. Feature visualization can be used to visualize the image objects that
specific parts of a machine vision system are “looking for”. While, on the surface, such
visualizations do make machine vision systems more interpretable, we show that the more
legible a feature visualization image is, the less it actually represents the perceptual topology
of a specific machine vision system. While feature visualizations thus indeed mitigate
the opacity of machine vision systems, they also conceal, and thus potentially perpetuate,
their inherent perceptual bias. Feature visualizations and other visual analytics techniques,
we argue, should thus not be understood so much as direct “traces” or “reproductions”
of the perceptual topology of machine vision systems (analog to the technical images of
photography) but more as indirect “illustrations”, as “visualizations” in the literal sense of
forcibly making-visual (and thus making visible and subsequently making interpretable)
the non-visual. They should be understood as technical metapictures in the sense of W.J.T.
Mitchell [Mi95], as images about (machine) seeing. The development of critical visual
analytics techniques, then, becomes an important (digital) humanities challenge, situated at
the interface of computer science and visual studies.

2 Building Blocks of Perceptual Bias

2.1 Deep convolutional neural networks

Our investigation looks at machine vision systems based on deep convolutional neural
networks (CNNs), one of the most successful machine learning techniques within the larger
artificial intelligence revolution we are witnessing today [Kr12]. CNNs have significantly
changed the state of the art for many computer vision applicationsȷ object recognition,
object detection, human pose estimation, and many other computer vision tasks are powered
by CNNs today, superseding “traditional” feature engineering processes. For the purpose
of this investigation, we will describe CNNs from a topological perspective rather than
a mathematical perspective. In other words, we propose to understand CNNs as spatial
structures. From the topological perspective, we can describe CNNs as layered systems.
In the simplest version of a (non-convolutional) neural network, individual layers consist
of neurons, atomic units that take in values from neurons in the previous layer and return
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some weighted sum of these values. Deep convolutional neural networks, then, introduce
new classes of neurons, which perform more complex functions like convolution. Common
CNN architectures can have millions of neurons and even more interconnections between
these neurons. It is thus close to impossible to infer from looking at the source code, data,
weights, or any other aspect of a CNN, either alone or in conjunction, what it does, or what
it has learned. [SB18] have suggested calling this opacity “inscrutability”.

Inscrutability, however, is not the only reason for the notorious opacity of CNNs. As [SB18]
argue, CNNs are also non-intuitive. The internal “reasoning” of neural networks does not
necessarily correspond to intuitive methods of inference, as hidden correlations often play
an essential role. [SB18] have argued that the non-intuitiveness of CNNs could be described
as an “inability to weave a sensible story to account for the statistical relationships in the
model. Although the statistical relationship that serves as the basis for decision-making
might be readily identifiable, that relationship may defy intuitive expectations about the
relevance of certain criteria to the decision.”

2.2 Interpretable machine learning

This problem has been widely recognized in the technical disciplines as the problem of
building interpretable machine learning systems, also referred to as explainable artificial
intelligence systems. Such systems would, either by design or with the help of external tools,
provide human-understandable explanations for their decisions, self-mitigating both their
inscrutability and non-intuitiveness. In the past three to five years, research in interpretable
machine learning has matured into a proper subfield of computer science [Li16; DK17;
Gi18] and a plethora of statistical tricks has been developed to ensure the interpretability
of simpler models like linear regression. Beyond these technical results, however, a larger
conceptual discussion has emerged in the technical disciplines as well that “infringes” on the
terrain of the humanities [Of17]. It is centered around attempts to find quantitative definitions
for concepts that naturally emerge from the problem at hand, such as “interpretation” and
“representation”, with the help of methods and concepts from disciplines as diverse as
psychology, philosophy, and sociology, building a “rigorous science of interpretable machine
learning”, as [DK17] write. We propose that, for machine vision systems, this inherent
transdisciplinarity implies linking technical concepts and concepts from visual studies. In
particular, it suggests understanding the interpretation of machine vision systems as an act
of image-making, both literally and metaphorically. This is why, in the following, we will
look at feature visualization.

2.3 Feature visualization

Feature visualization belongs to a range of techniques for the visual analysis of machine
learning systems called visual analytics [Ho18]. Originally developed by [Er09] and
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continuously improved since, feature visualization has been shown to produce remarkable
results [Ol17; Ol18]. Importantly, we choose to investigate feature visualization not for its
specific relevance to the digital humanities context – in fact, attribution methods [Se17;
Ch19] are more commonly employed in the analysis of cultural data [BO20] – but because
it best demonstrates the issue of perceptual bias that affects all visual analytics methods.
Technically, feature visualization is a straightforward optimization process. To visualize
what a neuron in a deep convolutional neural network has learned, a random noise image is
passed through the layers of the network up until the hidden layer that contains the neuron
of interest. Normally, during the training or prediction stages, the image would be passed
further on to the output layer. For the purpose of visualization, however, we are not interested
in a prediction but in the “activation” of a single neuron, its individual response to a specific
input image when it reaches the neuron’s layer. Hence, instead of utilizing the original loss
function of the network, this response is now interpreted as its loss function. In other words,
it is now the response of a single neuron that drives the “learning” process. The important
difference is that this new loss flows back through the network beyond the input layer and
is used to change the raw pixel values of the input image. The input image is thus altered,
while the network’s internal interconnections remain untouched. The altered image is then
being used again as the input image during the next iteration, and so on. After a couple
iterations, the result is an image that highly activates one specific neuron.

3 Manifestations of Perceptual Bias

3.1 Syntactic bias

This process, however, is called “naïve” feature visualization for a reason. In almost all
cases, images obtained with it will exclusively contain very high frequencies and will thus
be “illegible” in both the syntactic and semantic senseȷ there will be no visible structure,
and no recognizable content (fig. 1). The images may very well be the best possible images
with regard to a specific neuron and may very well be the closest possible visualizations of
what this neuron has learned. To the human observer, however, they contain no information.
They are adversarial examples [Sz1«; Go1»b] – images that highly activate specific neurons
or classes in a fully trained deep convolutional neural network, despite being utterly
uninterpretable. Naïve feature visualization, then, shows us a first glimpse of the peculiar
perceptual topology of CNNs. Perceptual bias, here, takes the form of syntactic bias. This
syntactic bias, in turn, manifests as texture bias [Ge19], an inductive bias in CNNs that
“naturally” appears in all common CNN architectures. Inductive biases are “general”, prior
assumptions that a learning system uses to deal with new, previously unseen data.

At this point, it is important to note that we will not consider modifying the inductive
biases of the CNN itself as a solution to the problem of perceptual bias, as, for instance,
[Ge19] suggest. More precisely, for the purpose of our investigation, we are interested in
interpretable machine learning as a narrow set of post-hoc methods to produce explanations.
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Thus, we will also not take the field of representation learning [Be1«] into consideration,
which is concerned with the development of mechanisms that enforce the learning of
“better” representations. This restriction to the scope of our investigation has three main
reasons. The first reason is the post-hoc nature of the bias problem. While efforts to build
resistance to bias into machine learning models exist, there is, at the moment, no clear
incentive for industry practitioners to do so, except for marketing purposes. It can thus be
assumed that, in real-world scenarios, the detection and mitigation of bias will be mostly
a post-hoc effort. The second reason is a simple historical reason. Thousands of machine
learning models based on the exact perceptual topologies under investigation here have
already been deployed in the real world, and the digital humanities in particular rely on these
“off-the-shelf” models. Thus, it is of vital importance to understand, and be able to critique,
such models and their perceptual biases. Finally, while impressive progress has been made
in other areas of machine learning [Cr20], in machine vision, controlling and harnessing
inductive biases can still be considered an open problem. Recent research suggests that at
least one established principle of gestalt theory (the law of closure) does emerge in CNNs
[Ki19; Ri17; FL18] as an inductive bias. Overall, however, the inductive biases of CNNs
are still unclear [CS17] and thus unmanageable.

Fig. 1ȷ Leftȷ Unregularized feature visualization of the “banana” class of an InceptionV« CNN [Sz16]
trained on the 1,000 ImageNet classes in the ILSVRC2012 ImageNet subset [Ru15]. Rightȷ regularized
visualization of the same class.

Given these restrictions, the only option to mitigate this specific textural aspect of perceptual
bias is to not change the model, but to change our image of it. In the case of feature
visualization, it means adding back representational capacity to these images. It means
introducing constraints – in other words, different biases – that allow the production of images
that are images of something, instead of “just” images. Importantly, any such constraint,
however, automatically moves the image further away from showing the actual perceptual
topology of a CNN. It becomes less of a visualization, and more of a reconstruction. This
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trade-off is the core problem of perceptual biasȷ it can only be overcome by shifting towards
different, “better” biases, i.e. biases that shape our perception of the visual world. One
strategy to “add back” the representational capacity to feature visualization is regularization
(fig. 1). Regularization, here, simply means adding additional constraints to the optimization
process. This can be achieved either by adapting the loss function – for instance, by using
a quadratic loss function instead of just taking the mean of some values – or by applying
transformations to the input image in regular intervals, for instance every few iterations in
the optimization process. [Er09] introduced the concept of activation maximization, the
core idea of iteratively optimizing an image to highly activate a selected neuron. From
there, more and more elaborate regularization techniques started to appear, each introducing
concrete suggestions for signal processing operations on the input image between iterations,
on top of more common regularization techniques introduced through the loss function,
like L2 regularization. Among these are jitter, blur total variation filters, bilinear filters,
stochastic clipping and Laplacian pyramids. What all these techniques have in common is
some kind of frequency penalization, i.e. the active avoidance of input images evolving into
adversarial examples, either through optimizing for transformation robustness or through
direct filtering.

3.2 Semantic bias

Despite all regularization efforts, however, feature visualizations often still present “strange
mixtures of ideas” [Ol18]. Visualizing higher-level neurons in particular produces ambiguous
results, images that might, or might not, show proper “objects” (fig. 2). To learn more about
the logic of representation in CNNs, we thus have to askȷ what is the relation between
technical and semantic units, between artificial neurons and meaningful concepts, in CNNs?
Trivially, at least for higher level neurons, individual feature visualization images must
always have a degree of ambiguity that is directly correlated to the diversity of the training
set. After all, the network has to be able to successfully classify a range of instances of an
object with very different visual properties. In that sense, reality is “distributed”, and it is
no surprise that feature visualization images will reflect different manifestations of, and
perspectives on, an object, akin to Cubist paintings.

But, the entanglement of concepts in the internal representations of a CNN goes beyond this
“natural” ambiguity. Generally, we can state that, in all predictions of a CNN, all neurons
play “a” role. Even if their role is just to stop the information flow, i.e. to pass on zero
values to the next layer, these one-way streets are in no way less relevant to the classification
accuracy of the whole system than all other neurons. In a way, concepts are thus “dissolved”,
or “entangled”, when they are learned, and represented, by a CNN. Early work [Sz1«]
suggests that this entanglement is inevitable and absolute. Later work [Ba17] shows that
some neural network architectures are less “naturally entangled” then others. Generally,
however, significant supervision or, again, artificial inductive biases [Lo19] are required to
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“disentangle” CNNs and arrive at a meaningful correspondence of technical and semantic
units.

Perceptual bias, here, thus takes the form of semantic bias. Other than in the case of
adversarial examples/texture bias, where perceptual bias affects the formal aspects of the
visualization, here, it concerns aspects of meaning. Objects, for us, are necessarily spatially
cohesive. If they are represented by CNNs, however, they lose this spatial coherence,
different aspects of an object are attached to different neurons, which, in turn, get re-used in
the detection of other objects. This missing coherence does not interfere with the CNN’s
ability to detect or classify spatially coherent objects in images but enables it. For feature
visualization, which visualizes CNNs in their “natural”, entangled state, reaching semantic
interpretability thus implies the introduction of even more constraints. These additional
constraints are so called natural image priors. Just as regularization is a syntactic constraint,
biasing the visualization towards a more natural frequency distribution, so called natural
image priors are a semantic constraint, biasing the visualization towards separable image
objects.

Fig. 2ȷ Leftȷ regularized feature visualization of the “violin” class of an InceptionV« CNN [Sz16]
trained on the 1,000 ImageNet classes in the ILSVRC2012 ImageNet subset [Ru15]. Rightȷ George
Braque, Violin and Candlestick (1910).

To produce natural image priors, [DB16; Ng16] propose to use a generative adversarial
network (GAN)3. This implies, however, that the images that can be produced with this
feature visualization method are entirely confined to the latent space of the specific GAN
employed. Where regularization constrains the space of possible images to those with a
“natural” frequency distribution, natural image priors constrain the space of possible images

3 Unfortunately, we cannot explain GANs in detail here, and instead refer the reader to [Go1»].
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to the distribution of a GAN generator. In both cases, interpretable images are the result.
These interpretable images, however, do not reflect the perceptual topology of the analyzed
CNN. On the contraryȷ they intentionally get rid of the non-humanness that defines this
topology, translating it into a human mode of perception that, in this form, simply does not
exist in the CNN. To be images of something, feature visualizations have to be freed from
the very mode of perception they are supposed to illustrate.

4 Technical Metapictures

As we have seen, the perceptual topology of machine vision systems, based on CNNs,
is not “naturally interpretable”. It is biased towards a distributed, entangled, deeply non-
human way of representing the world. Mitigating this perceptual bias thus requires a forced
“making legible”. Feature visualization, as we have seen, is one possibility to achieve this
forced legibility. However, feature visualization also exemplifies an essential dilemmaȷ the
representational capacity of feature visualization images is inverse proportional to their
legibility. Feature visualizations that show “something” are further removed from the actual
perceptual topology of the machine vision system than feature visualizations that show
“nothing” (i.e. illegible noise). There is thus an irreconcilable difference between the human
and machine perspective. As Thomas Nagel reminds us, there is a “subjective character
of experience” [Na7»], a surplus generated by each specific perceptual approach to the
world that can never be “translated”. Even if an external observer would be able to attain
all the facts about such an inherently alien experience (analyze it in terms of “functional
states”), they would still not be able to reconstruct said experience from these facts. Feature
visualizations, then, should not be understood so much as direct “traces” or “reproductions”
of the perceptual topology of machine vision systems (analog to the technical images of
photography) but more as indirect “illustrations”, as “visualizations” in the literal sense of
forcibly making-visual (and thus making visible and subsequently making interpretable) the
non-visual.

We thus propose to understand these images as technical metapictures, a term we adapt
from W.J.T. Mitchell’s picture theory [Mi95]. For Mitchell, metapictures are pictures that
are “deeper” than “regular” pictures, as they incorporate a form of recursionȷ they are
representations of representation “pictures about pictures” [Mi95, «6]. Mitchell identifies
certain abilities of these pictures. “The metapicture [...] is the place where pictures reveal
and ‘know’ themselves, where they reflect on the intersections of visuality, language, and
similitude, where they engage in speculation and theorizing on their own nature and history”
[Mi95, 82]. They are not only self-reflective but reflective on imagery and perception. “The
metapicture is a piece of moveable cultural apparatus, one which may serve a marginal
role as illustrative device or central role as a kind of summary image, what I have called
a ‘hypericon’ that encapsulates an entire episteme, a theory of knowledge” [Mi95, »9].
The technical metapictures that feature visualization produces realize exactly this idea of
a “summary image.” They promise not a theory of images but a theory of seeing. More
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precisely, their promise is exactly that of interpretable machine learningȷ to provide an
intuitive visual theory of the non-intuitive perceptual topology of neural networks. In a
sense, technical metapictures, and their use in interpretable machine learning, are thus an
operationalization of the notion of metapicture itself.

For Mitchell, this epistemological power of metapictures, then, equips them with a sort of
agency. Metapictures “don’t just illustrate theories of picturing and visionȷ they show us
what vision is, and picture theory” [Mi95, 57]. This agency, however, is actualized only
if and when it comes into contact with a viewer. To make sense, to actually provide the
reflection on images and vision that they promise, metapictures require a viewer. In the
case of feature visualization, this interpretation has to happen not only on the level of the
viewer but also on the technical level, where a significant effort has to be made to translate
the anti-intuitive perceptual topology of a machine vision system into human-interpretable
images in the first place. This includes adding information from the outside, for instance in
the form of natural image priors. In other words, technical metapictures manifest an implicit,
technical notion of interpretation, that is inseparable from the explicit interpretation that
they also require. Interpretations based on feature visualization images thus become (human)
interpretations of (technical) interpretations [Of18].

In conclusionȷ analyzing and understanding perceptual bias in machine vision systems
requires reframing it as a problem of interpretation and representation, for which we have
adapted W.J.T. Mitchells notion of the metapicture. Technical metapictures, we have argued,
mirror the act of interpretation in the technical realmȷ regularization and natural image
priors make feature visualization images legible before any interpretation can take place.
Paradoxically, however, as the representational capacity of feature visualization images is
inverse proportional to their legibility, this pre-interpretation presents itself as a massive
technical intervention as well, that disconnects the visualization from the visualized. All of
this suggests that visual analytics is an essentially humanist endeavor that calls for additional
transdisciplinary investigations at the interface of computer science and visual studies.
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