
Semi-automated decision making support

for undocumented evolutionary changes

Jan Ladiges, Alexander Fay

Automation Technology Institute

Helmut Schmidt University

Holstenhofweg 85, 22043 Hamburg, Germany

Email: {ladiges, fay}@hsu-hh.de

Christopher Haubeck, Winfried Lamersdorf

Distributed Systems and Information Systems

University of Hamburg

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

Email: {haubeck, lamersdorf}@informatik.uni-hamburg.de

1 Introduction

Long-living systems evolve under boundary

conditions as diverse as the systems themselves. In

the industrial practice of the production automation

domain, for example, adaptations and even the

initial engineering of control software are often

performed without a formalized requirement

specification [1].

Nevertheless, operators must decide during

operation if such an undocumented change is

consistent to the (informal) specification since

changed behavior can also occur due to unintended

side effects of changes or due to other influences

(like wear and tear). In addition, the system

behavior is strongly dependent on both, the

software and the physical plant. Accordingly,

approaches are needed to extract requirements out

of the interdisciplinary system behavior and present

it to the operator in a suitable format.

The FYPA²C project (Forever Young Production

Automation with Active Components) tries to

realize an extraction of behavior related to non-

functional requirements (NFR) by monitoring and

analyzing signal traces of production systems. In

doing so, the specific boundary conditions of the

production automation domain should be

considered.

2 The Evolution Support Process

The assumption of this approach is that the

externally measured signal traces of programmable

logic controllers (PLCs) provide a basis to capture

the NFRs on the system. Fig. 1 shows how low-

level data (the signals) can be lifted to high-level

NFR-related information. First, the signal traces

which are created during (simulated) usage

scenarios are used to automatically generate and

adapt dynamic knowledge models. Such models are

e.g. timed automata learned by the algorithm

described by Schneider et al. in [2]. Each model

expresses specific aspects of the system and serves

as a documentation of the underlying process. An

analysis of these models can provide NFR-related

properties of the system in order to evaluate the

influences of changes. Such properties are e.g. the

throughput rate or the routing flexibility (see [3]).

Figure 1: Process of extracting system properties

Similar work has been done in [4]. Here, automata

are generated out of test cases which are e.g.

derived from design models. An invariant analysis

allows for extracting functional requirements which

can be monitored. However, the FYPA²C approach

assumes that no formal models or test-cases are

present and it aims at the extraction of NFRs.

Since not every I/O-signal of a PLC includes

information about needed aspects, a selection of the

signals has to be done. Therefore, signals get

enriched by semantics. The semantics include

which kind of information is given by the signal. A

signal stemming from a sensor which identifies the

material of a workpiece (e.g. a capacitive sensor

distinguishing workpieces) would get the semantic

workpieceIdentification. Note that enriching signals

is a rather simple step compared to creating e.g.

design models.

Since a monitoring system cannot decide if a

performed change and its influences on the NFRs is

intended (or at least acceptable), a practical semi-

automated evolution support process with a “user in

the loop” is used. At first an anomaly detection

engine detects whenever a behavior is observed that

contradicts the knowledge models and, therefore,

can indicate an evolutionary change. In case of

timed automata the anomaly detection method

presented in [2] is used. This anomaly is, in a first

step, reported to the user. At this point only the

actual anomaly, the context it occurs in, and a

limited amount of current properties and probable

influences can be reported since only influences on

the already observed scenarios can be considered.

Deductions on the overall properties are very

restricted at this point. If a decision cannot be made

here, the changed behavior is added to the

concerned knowledge models in order to evaluate

the effects on the system properties in detail. This is

done by an analysis based on the extracted

scenarios that are applied on the plant or a

simulation. The advantage of these steps is that the

operator can be informed based on the overall NFR-

related properties of the system. As a reaction the

change can be reverted if unintended or, if it is

intended, adapted scenarios and models can be

treated as valid.

Figure 2: Semi-automated evolution support process

If there is no possibility for a proactive

determination of the system properties (missing of

simulation and no availability of the system for

tests), an adaptation of the models during operation

is the only remaining option and just the already

observed changes can be evaluated. When an

unacceptable influence is observed the operator can

react accordingly. However, the scenarios observed

after the occurring change can be compared to the

stored ones in order to estimate the completeness of

the adapted knowledge models.

To be more precisely, consider the following simple

example: A conveyor system is responsible for

transporting workpieces to a machine located at the

end of the conveyor system. Workpieces are

detected by lightbarriers at both ends of all

conveyors. A requirement on the throughput rate

demands that the transport does not take longer than

60 seconds. A PLC collects the signals stemming

from the lightbarriers and starts the transport when

a workpiece reaches the first conveyor and stops it,

when the workpiece reaches the machine. Conveyor

speed can be parameterized within the PLC-

program. A timed automaton (as a knowledge

model) represents the transportation and is learned

based on the observed signal traces by the learning

algorithm in [2].

The automaton should just include signals related to

the transportation. Therefore all I/O signals of the

PLC are enriched by simple semantics and the

learning algorithm is applied only on signals with

the given semantic workpieceDetection. These are

all signals stemming from lightbarriers.

Accordingly, an analysis on the automaton enables

deducing the transporting times by aggregating the

transition times. Due to maintenance the motors of

the conveyors are exchanged by motors with a

higher slip resulting in a slower transportation.

Unfortunately, the operator did not adapt the

parameters in the PLC. During the first run of the

plant the slower transportation is detected as a time-

anomaly and reported to the operator after the

workpiece passed the first conveyor. The operator

can now decide if the anomaly is intended (or at

least acceptable) or not. If he is not able to do this

decision, for example due to a high complexity of

the conveyor system, he can declare the anomaly as

uncertain and the knowledge model gets further

adapted during the transportation until a deduction

about the fulfillment or violation of the throughput

requirement can be done. If the requirement is

violated the operator can react accordingly by

changing the parameters in the PLC code.

References

[1] G. Frey, L. Litz, “Formal methods in PLC

programming,” in Intl Conf on : Systems, Man, and

Cybernetics, vol.4, 2000.

[2] S. Schneider, L. Litz, and M. Danancher,

“Timed residuals for fault detection and isolation in

discrete event systems,” in Workshop on :

Dependable Control of Discrete Systems, 2011.

[3] J. Ladiges, C. Haubeck, A. Fay, and W.

Lamersdorf, “Operationalized Definitions of Non-

Functional Requirements on Automated Production

Facilities to Measure Evolution Effects with an

Automation System,” in Intl. Conf. on Emerging

Technologies and Factory Automation, 2013.

[4] C. Ackermann, R. Cleaveland, S. Huang,

A. Ray, C. Shelton, E. Latronico, „Automatic

requirement extraction from test cases,“ in Intl.

Conf. on Runtime Verification, 2010.

