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1 Introduction 

Long-living systems evolve under boundary 

conditions as diverse as the systems themselves. In 

the industrial practice of the production automation 

domain, for example, adaptations and even the 

initial engineering of control software are often 

performed without a formalized requirement 

specification [1].  

Nevertheless, operators must decide during 

operation if such an undocumented change is 

consistent to the (informal) specification since 

changed behavior can also occur due to unintended 

side effects of changes or due to other influences 

(like wear and tear). In addition, the system 

behavior is strongly dependent on both, the 

software and the physical plant. Accordingly, 

approaches are needed to extract requirements out 

of the interdisciplinary system behavior and present 

it to the operator in a suitable format.  

The FYPA²C project (Forever Young Production 

Automation with Active Components) tries to 

realize an extraction of behavior related to non-

functional requirements (NFR) by monitoring and 

analyzing signal traces of production systems. In 

doing so, the specific boundary conditions of the 

production automation domain should be 

considered.  

2 The Evolution Support Process 

The assumption of this approach is that the 

externally measured signal traces of programmable 

logic controllers (PLCs) provide a basis to capture 

the NFRs on the system. Fig. 1 shows how low-

level data (the signals) can be lifted to high-level 

NFR-related information. First, the signal traces 

which are created during (simulated) usage 

scenarios are used to automatically generate and 

adapt dynamic knowledge models. Such models are 

e.g. timed automata learned by the algorithm 

described by Schneider et al. in [2]. Each model 

expresses specific aspects of the system and serves 

as a documentation of the underlying process. An 

analysis of these models can provide NFR-related 

properties of the system in order to evaluate the 

influences of changes. Such properties are e.g. the 

throughput rate or the routing flexibility (see [3]).  

 
Figure 1: Process of extracting system properties 

Similar work has been done in [4]. Here, automata 

are generated out of test cases which are e.g. 

derived from design models. An invariant analysis 

allows for extracting functional requirements which 

can be monitored. However, the FYPA²C approach 

assumes that no formal models or test-cases are 

present and it aims at the extraction of NFRs. 

Since not every I/O-signal of a PLC includes 

information about needed aspects, a selection of the 

signals has to be done. Therefore, signals get 

enriched by semantics. The semantics include 

which kind of information is given by the signal. A 

signal stemming from a sensor which identifies the 

material of a workpiece (e.g. a capacitive sensor 

distinguishing workpieces) would get the semantic 

workpieceIdentification. Note that enriching signals 

is a rather simple step compared to creating e.g. 

design models. 

Since a monitoring system cannot decide if a 

performed change and its influences on the NFRs is 



intended (or at least acceptable), a practical semi-

automated evolution support process with a “user in 

the loop” is used. At first an anomaly detection 

engine detects whenever a behavior is observed that 

contradicts the knowledge models and, therefore, 

can indicate an evolutionary change. In case of 

timed automata the anomaly detection method 

presented in [2] is used. This anomaly is, in a first 

step, reported to the user. At this point only the 

actual anomaly, the context it occurs in, and a 

limited amount of current properties and probable 

influences can be reported since only influences on 

the already observed scenarios can be considered. 

Deductions on the overall properties are very 

restricted at this point. If a decision cannot be made 

here, the changed behavior is added to the 

concerned knowledge models in order to evaluate 

the effects on the system properties in detail. This is 

done by an analysis based on the extracted 

scenarios that are applied on the plant or a 

simulation. The advantage of these steps is that the 

operator can be informed based on the overall NFR-

related properties of the system. As a reaction the 

change can be reverted if unintended or, if it is 

intended, adapted scenarios and models can be 

treated as valid. 

Figure 2: Semi-automated evolution support process 

If there is no possibility for a proactive 

determination of the system properties (missing of 

simulation and no availability of the system for 

tests), an adaptation of the models during operation 

is the only remaining option and just the already 

observed changes can be evaluated. When an 

unacceptable influence is observed the operator can 

react accordingly. However, the scenarios observed 

after the occurring change can be compared to the 

stored ones in order to estimate the completeness of 

the adapted knowledge models. 

To be more precisely, consider the following simple 

example: A conveyor system is responsible for 

transporting workpieces to a machine located at the 

end of the conveyor system. Workpieces are 

detected by lightbarriers at both ends of all 

conveyors. A requirement on the throughput rate 

demands that the transport does not take longer than 

60 seconds. A PLC collects the signals stemming 

from the lightbarriers and starts the transport when 

a workpiece reaches the first conveyor and stops it, 

when the workpiece reaches the machine. Conveyor 

speed can be parameterized within the PLC-

program. A timed automaton (as a knowledge 

model) represents the transportation and is learned 

based on the observed signal traces by the learning 

algorithm in [2]. 

The automaton should just include signals related to 

the transportation. Therefore all I/O signals of the 

PLC are enriched by simple semantics and the 

learning algorithm is applied only on signals with 

the given semantic workpieceDetection. These are 

all signals stemming from lightbarriers. 

Accordingly, an analysis on the automaton enables 

deducing the transporting times by aggregating the 

transition times. Due to maintenance the motors of 

the conveyors are exchanged by motors with a 

higher slip resulting in a slower transportation. 

Unfortunately, the operator did not adapt the 

parameters in the PLC. During the first run of the 

plant the slower transportation is detected as a time-

anomaly and reported to the operator after the 

workpiece passed the first conveyor. The operator 

can now decide if the anomaly is intended (or at 

least acceptable) or not. If he is not able to do this 

decision, for example due to a high complexity of 

the conveyor system, he can declare the anomaly as 

uncertain and the knowledge model gets further 

adapted during the transportation until a deduction 

about the fulfillment or violation of the throughput 

requirement can be done. If the requirement is 

violated the operator can react accordingly by 

changing the parameters in the PLC code. 
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