
Neues über Systeme

ANTIC: Algebraic Number Theory In C
W. Hart
(TU Kaiserslautern)

goodwillhart@googlemail.com

Introduction
From about the second year of the development of the
Flint (Fast Library for Number Theory) project [3], we
had our sights set on extending Flint with functionality
in algebraic number theory.

As an algebraic number theorist, there are three ob-
vious computer algebra systems to use: Magma [1], a
closed source system developed in Sydney, Pari/GP [5]
an open source library and interpreter developed in Bor-
deaux and the Sage project [7], an international open
source project.

As far as algebraic number theory is concerned, much
of the functionality in Sage already derives from existing
open source packages, such as Flint, NTL and Pari/GP,
so it isn’t completely independent.

Pari/GP is specialised for algebraic number theory
and has reasonable functionality. But the project is less
focused on highly optimised code and asymptotically
fast algorithms.

The remarkable conclusion is that if one wishes to
do computations in algebraic number theory, there isn’t
a wide choice for the user.

As announced last year at the 4th annual meeting of
the DFG Priority Project on computer algebra in Bad
Boll, Germany, the ANTIC library [2] aims to provide
a modern, highly optimised alternative to the existing
options.

Building ANTIC
ANTIC is an extension package for the Flint project, writ-
ten in C. As a Flint extension it benefits from all of the
existing infrastructure in Flint, including its “magic build
system” which enables developers to add files, tests and
profiles without modifying or reconfiguring the build sys-
tem, and a vast array of highly optimised, low-level and
asymptotically fast routines for integers, rationals, inte-
gers modulo n, finite fields and p-adics, and polynomials,
power series and matrices over all of the former.

Building ANTIC is trivial. When configuring Flint
one supplies:
./configure --extensions="/path/to/antic" [other

options ...]

One may also build Flint with the Arb extension [4],
a package developed by Fredrik Johansson for arbitrary
precision ball arithmetic over the reals and complex num-
bers. It includes many highly optimised implementations
of transcendental functions, including L-series, gamma
functions and much more, all with proven error bounds.

ANTIC consists of a number of modules, each of
which announces itself to Flint via a header file and sim-
ilarly named directory at the top level of the ANTIC
source tree, which can be unpacked anywhere.

Progress to date
Our task in this report is to update the computer algebra
community on the progress to date in the ANTIC library.

There are three modules in ANTIC so far: QFB a
module for postive definite binary quadratic forms, NF
for precomputing information about number fields to
speed up computations, and NF_ELEM a highly opti-
mised module for basic arithmetic in number fields.

The QFB module allows one to compute reduced
forms, prime forms, to compose, square and raise forms
to a power. There are also functions for computing the
exponent of the form class group (the bulk of the cost in
computing the structure of the class group of imaginary
quadratic number fields).

We have already used this code for finding the
class number of imaginary quadratic number fields with
smooth group order for discriminants of 110 decimal
digits. For example after some hours, our code using
ANTIC responded with
Discriminant:

-4000000000000000000000000000000000000
00000000000000000000000000000000000000
000000000000000000000000000000000648

Exponent:

10

mailto:goodwillhart@googlemail.com


63048272751140234257462826096848938682
076295416810640

Class number:

2^10 * 3 * 5 * 7 * 12421 * 45841 *
56149 * 14703947 * 17197469 *
88721167 * 52322143935097

The NF module allows one to specify a number field
by its defining polynomial over the rationals. ANTIC
distinguishes the case where the defining polynomial
is monic and integral, where various optimisations can
happen, and the general case.

The polynomial is stored in the Flint FMPQ_POLY
format, namely as a polynomial over the integers, with
an integer denominator.

We tried various kinds of precomputed inverse to
speed up reduction modulo the defining polynomial. In
the end, only two methods were actually faster than
generic polynomial arithmetic in Flint.

The first method we use is to precompute an inverse
of the leading coefficient of the numerator of the defining
polynomial.

All of the basic Flint polynomial division and re-
mainder code was modified to optionally accept this
precomputed inverse.

The second method was to compute a table of pow-
ers of x modulo the defining polynomial. If the degree
of the defining polynomial f(x) is n we compute xi
(mod f(x)) for i < 2n + 1. This optimisation is per-
formed whether the defining polynomial is integral and
monic or in the generic rational case.

However, this optimisation is only performed when
the degree of the number field is less than 30. Beyond
that, the cost of creating the table of powers becomes too
large for some applications.

A third kind of precomputation we perform is that of
the generalised traces

Sk =
∑
i

θki for 0 ≤ k ≤ n, (10)

where the θi are the roots of the minimum polynomial of
degree n.

The generalised traces are computed exactly using a
recurrence relation, from the coefficients of the defining
polynomial.

The NF_ELEM module is used for creating and doing
arithmetic with elements inside a number field created
with the NF module.

In the general case, a number field element is stored
as a rational polynomial. All of the Flint polynomial
arithmetic is optimised to deal specially with the case
that the denominator of such a polynomial is one.

The NF_ELEM module always ensures that these
polynomials have space for 2n − 1 coefficients. This
allows the product of two polynomials of degree n− 1
to be computed and stored, without reduction modulo
the defining polynomial of the number field. This is a
critical optimisation if one is multiplying matrices over a
number field, where one wishes to accumulate products
of number field elements whilst performing dot products,

before doing a single final reduction modulo the defining
polynomial at the end.

In the case of linear and quadratic number fields, we
have a slightly more efficient representation. In the linear
case, we store integers representing a numerator and de-
nominator. In the quadratic case, we have space for three
integers for an (unreduced) numerator and one integer
for a denominator.

All of the operations in ANTIC are specially opti-
mised for linear and quadratic fields.

Multiplication of number field elements is the most
involved code in ANTIC’s NF_ELEM module. We al-
low for multiplication of number field elements with-
out reduction modulo the defining polynomial, and also
without canonicalisation of the rational coefficients into
lowest terms.

Both of these optimisations seem to be made for
number field arithmetic in the Magma computer algebra
system.

The norm of number field elements is computed by
taking the resultant of the polynomial representing the
element and the polynomial defining the number field.

Flint offers asymptotically fast resultant (quasilinear
in the degree) using a half-gcd style resultant algorithm.
Timings of Magma seem to indicate that this optimisation
also exists in Magma, at least for polynomial arithmetic.

The trace of number field elements is computed by
taking the appropriate linear combination of the general-
ized traces that we precomputed when constructing the
number field.

If our number field element is

α = a0 + a1θ + . . .+ an−1θ
n−1

then we have

Tr(α) =

n−1∑
k=0

akSk,

where the Sk are the generalized traces.
This means that traces can be computed with a num-

ber of rational number operations that is linear in the
degree of the number field.

Benchmarks
In the graphs in Figure 1, we show the speedup AN-
TIC achieves over Magma for multiplication of random
number field elements in fields of various sizes, with co-
efficients of 10, 50, 100 and 1000 bits, respectively. We
forced Magma to perform reduction and canonicalisation,
so that we are not merely timing polynomial arithmetic,
but number field arithmetic.

In Figures 2 and 3 we show the speedup over Magma
for computing traces and norms, respectively, of random
elements with coefficients of 10 bits in number fields of
various degrees.

Comparison of trace and norm against Pari/GP is
not practical because in order to use Pari’s trace and
norm functionality, one first needs to create number field
objects, which take a very long time to generate.

11



Future work
The next items we plan to implement in ANTIC are char-
acteristic and minimum polynomials.

Following that, we plan to add matrix and polynomial
arithmetic over number fields, followed by ideal arith-
metic, computing maximal and equation orders, class
groups and unit groups.

Acknowledgement
Many thanks to Fredrik Johansson for assisting with the
graphs in this article.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust,
The Magma algebra system. I. The user language,

J. Symbolic Comput., 24 (1997), pp. 235 to 265,
http://magma.maths.usyd.edu.au

[2] Claus Fieker, William Hart, ANTIC, https://
github.com/wbhart/antic/

[3] William Hart, Fredrik Johansson, Sebastian Pancratz,
et. al. Flint, http://www.flintlib.org/

[4] Fredrik Johansson, Arb, http://fredrikj.
net/arb/

[5] The Pari Development Team, Pari/GP, http://
pari.math.u-bordeaux.fr/

[6] Victor Shoup, NTL: A Library for doing Number
Theory, http://www.shoup.net/ntl/

[7] William A. Stein et al., Sage Mathematics Soft-
ware, The Sage Development Team, http://www.
sagemath.org

Figure 1: Number field multiplication speedup vs Magma

Figure 2: Number field trace speedup Figure 3: Number field norm speedup

12

http://magma.maths.usyd.edu.au
https://github.com/wbhart/antic/
https://github.com/wbhart/antic/
http://www.flintlib.org/
http://fredrikj.net/arb/
http://fredrikj.net/arb/
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.shoup.net/ntl/
http://www.sagemath.org
http://www.sagemath.org

