
cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 101

Jicer: Slicing Android Apps for Cooperative Analysis

Felix Pauck1, Heike Wehrheim2

Abstract: Slicing allows to identify which program parts influence or are influenced by a certain
statement of a program. Hence, if we know which statement is potentially causing an issue we can
slice accordingly to only inspect the slice while debugging. With Jicer, we proposed a slicer that can
be used in a different context, namely cooperative Android app analysis. In combination with taint
analysis tools, we employed Jicer to get more accurate results.

Keywords: Cooperative Analysis; Android; Taint Analysis; Static Slicing

1 Cooperative Analysis with Jicer

Android has become the most-used operating system, consequently it has also be-
come a compelling target for attackers who, for example, try to steal users’ pri-
vate data. One instrument to detect privacy leaks before they are exploited is
taint analysis. Fortunately, there exist many Android (taint) analysis tools that fo-
cus on different aspects related to the Android framework or an app’s program-
ming language. Even more luckily, there nowadays exist cooperative analysis frame-
works that allow to compose (and evaluate) analysis combinations [PW19, PBW18].

Phase II: Slicing

Phase I: Graph Generation

Create
PDGs

Merge
PDGs

Enhance
SDG

Prepare
Slicing

Slice
ADG

Comple-
tion

PDGs
(,)

SDG
()

ADG
(,)

[field-labels])
From To

Sliced
ADG

ADG
(,)

App/Class

Sliced
App/Class

2

11 2 3

46 5

1 StubDroid Summaries

2 List of Callback Classes

Control Data

Field-Data

Call

Callback

From-target

To-target

From

To

Legend

Fig. 1: Overview of the approach

With Jicer [PW21] (Jimple
Slicer) we proposed a static
Android app slicer which is
usable in cooperative analysis
context. It allows slicing an
app such that it can still be
analyzed thereafter — a fea-
ture that distinguishes Jicer
form related Android slicing
approaches. In the following
the approach behind Jicer is
explained in more detail.

Jicer implements a six-step
workflow that can be divided into two phases: graph generation and slicing (see Figure 1).
1 Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany fpauck@mail.uni-paderborn.de
2 University of Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany heike.wehrheim@uol.
de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:fpauck@mail.uni-paderborn.de
mailto:heike.wehrheim@uol.de
mailto:heike.wehrheim@uol.de

102 Felix Pauck, Heike Wehrheim

Once an Android app (.apk file) is provided as input, a program dependence graph (PDG),
modeling control and data dependencies, is computed for all methods contained in this
app (➊). The second step (➋) merges these PDGs into a single system dependence graph
(SDG) as proposed by Horwitz et al. back in 1990 [HRB90]. This SDG is then enhanced
with edges that model callbacks (with respect to e.g. life-cycles or GUI elements) and
data dependencies related to fields. The output of this enhancement step (➌) is called app
dependence graph (ADG). With the generation of the ADG the graph generation phase ends.

To start the slicing phase, the slicing criteria provided by the user are identified first (➍). They
define from where and to where to slice. Note that Jicer allows to provide a to-criterion, a
from-criterion or both. Depending on the criteria given, a backward slice (to), a forward slice
(from) or a chop (from-to) is computed. Figuratively speaking, a chop can be understood as
the intersection of a backward and a forward slice. Once the ADG is sliced (➎), finishing
touches are performed during Step ➏. Statements that are mandatory for analyses but not
included in the slice are added to the slice. For example, setContentView statements link a
layout to an Android activity, hence, many analyses require such statements to be available
to know which layout must be taken into account. At the end, the sliced Android package
(.apk file) is output. Jicer also supports other output formats but .apk files are the preferred
choice in cooperative analysis context, because most analysis tools require .apk files as
input. Accordingly, all these tools can be used to analyze slices produced by Jicer.

The evaluation presented in the proposing paper [PW21] shows that Jicer is able to slice
real-world apps thereby reducing app size about ∼55 to ∼96%. Most importantly, in a
cooperative analysis Jicer can increase the overall precision (eliminating up to 82% of
false positives that have been found without slicing).

2 Data Availability

An artifact submitted along with the Jicer study, that has successfully undergone an artifact
evaluation, is available at Zenodo (https://doi.org/10.5281/zenodo.5462859). It contains
all tools and results determined in the original study. Furthermore, the up-to-date version of
Jicer can be found at Github (https://FoelliX.github.io/Jicer).

Bibliography
[HRB90] Horwitz, Susan; Reps, Thomas W.; Binkley, David W.: Interprocedural Slicing Using

Dependence Graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[PBW18] Pauck, Felix; Bodden, Eric; Wehrheim, Heike: Do Android taint analysis tools keep their
promises? In: Proceedings of the 26th ESEC/FSE, 2018. ACM, 2018.

[PW19] Pauck, Felix; Wehrheim, Heike: Together strong: cooperative Android app analysis. In:
Proceedings of ESEC/FSE, 2019. ACM, 2019.

[PW21] Pauck, Felix; Wehrheim, Heike: Jicer: Simplifying Cooperative Android App Analysis
Tasks. In: Proceedings of the 21st SCAM, 2021. IEEE, 2021.

https://doi.org/10.5281/zenodo.5462859
https://FoelliX.github.io/Jicer

