
cba

(Hrsg.):
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

quark: QUantum Application Reformulation Kernel

Elisabeth Lobe 1

Abstract: Quantum annealers solve Ising problems heuristically. Several standard methods have
been established to transform more complex problems into the Ising problem format, which are
commonly still applied by hand. In this work, we present our software package quark, automating the
full transformation process from an arbitrary discrete optimization problem to the corresponding Ising
problem. Based on a parameterized formulation of the original problem, a series of easily reproducible
experiments can thus be set up. This allows users to evaluate the suitability of the annealing machines
in solving their specific problem without a deeper knowledge about the Ising problem specifics.

Keywords: Ising Problem, QUBO, Discrete Optimization, Quantum Annealing, Quantum Computing

1 Introduction

Quantum annealing is a method aiming at optimizing certain objective functions by taking
advantage of a quantum mechanical process, the adiabatic evolution towards a quantum
system representing the optimal solution in its ground state [Fa00]. Hereby, several physical
effects might disturb the annealing process leading to sub-optimal solutions, which is why the
corresponding devices, the quantum annealers, are considered as heuristic samplers [Mc20].

The implemented problems are known as Ising problems, which search for the minimum
of a quadratic function over spin (+1/−1) variables without any further constraints. In
the mathematical community, the notation of quadratic unconstrained binary optimization
(QUBO) problems is more common, which refers to the same type of problem but acting
on binary (0/1) variables. These problems are known to be NP-hard in general [Ba82] and
therefore also relate to a multitude of other problems for which the best known classical
algorithm takes exponential runtime, and which are thus intractable by classical devices
above a certain size of the problem instance.

For a lot of, in general rather academic, combinatorial optimization problems the corre-
sponding Ising problem formulations are known, such as for maximum cut or graph coloring.
See [Lu14] for an extensive list of examples. Several more advanced applications have also
already been reformulated, e. g., the flight-gate assignment (FGA) problem as part of the
airport planning [SLJ19]. A lot of such industrial use cases refer back to some academic
example, like the FGA to the quadratic assignment problem. However, the experience from
1 Institute for Software Technology, German Aerospace Center (DLR),

Lilienthalplatz 7, 38108 Braunschweig, Germany
elisabeth.lobe@dlr.de https://orcid.org/0000-0002-3473-8906

https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-3473-8906
mailto:elisabeth.lobe@dlr.de
https://orcid.org/0000-0002-3473-8906
https://orcid.org/0000-0002-3473-8906

2 Elisabeth Lobe

constrained discrete
optimization problem

minimize 𝑝(𝑥)
subject to ℓ1 ≤ 𝑞1 (𝑥) ≤ 𝑢1,

...,

ℓ𝑚 ≤ 𝑞𝑚 (𝑥) ≤ 𝑢𝑚,

𝑥 ∈ Z𝑛

QUBO/Ising problem

minimize
𝑁∑︁
𝑖=1

𝑊𝑖𝑥𝑖 +
𝑁∑︁

𝑖< 𝑗=1
𝑆𝑖 𝑗𝑥𝑖𝑥 𝑗

subject to 𝑥 ∈ {0, 1}𝑁/{−1, 1}𝑁

Fig. 1: Main transformation step automatically performed with quark for providing the problem in a
format the quantum annealers can process

these applications shows that their actual formulations differ in the details, hence also
require individually derived Ising/QUBO formulations.

In Fig. 1, we have depicted the general main transformation step with the corresponding
mathematical formulations of the problems. Several standard methods have been established
to perform this step and to reformulate given arbitrary discrete optimization problems [Gl22].
They are usually applied manually, requiring a deeper understanding of the properties of
Ising problems rather than only the domain-specific knowledge of the original optimization
problem. This demands for an automation of the full process to shift the complexity away
from the end-users, such that they are able to easily produce a large test set and evaluate the
capabilities of the solver for their specific problem.

2 Package Description

We have developed and constantly extend a software library at https://gitlab.com/
quantum-computing-software/, whose core package is quark [Ge23]. In this section, we
briefly summarize the main goals of quark and explain its general usage along an example.

2.1 Goals and Main Features

Our package quark is designed to provide a user-friendly, low-level entry point for domain
experts to deal with quantum annealers. Based on a parameterized formulation of the
problem, several problem instances can be generated with the same structure. The corre-
sponding optimization problems can then be reformulated to Ising problems by automated
transformation steps, which enables the user to perform easily reproducible experiments over
a large test set. This allows an analysis of the machine behaviour and experimental results
more suited to the domain demands, providing hints whether the problems are suitable to
be solved with the annealers. This is supported by an interface to a classical optimizer.

D-Wave already provides an extensive software library surrounding their quantum annealers,
also already implementing several transformation steps [D-23a]. We do not want to compete

https://gitlab.com/quantum-computing-software/
https://gitlab.com/quantum-computing-software/

quark: QUantum Application Reformulation Kernel 3

with but rather accompany D-Wave’s API with our instance-centric approach focusing on
the original problem. A particular example where we simplify the provided functionality is
the handling of polynomials with degree larger than two, which is available through the
D-Wave API only via detours, cf. [D-23a], which means that the user needs to know about
the structural differences. In quark no additional but just the base classes are necessary.
With the step from a constrained to an unconstrained problem, reduction variables with
corresponding penalty terms are introduced and the degree of the polynomials is thus
reduced automatically.

From our own experience in experimenting with the annealing machines, we have also
seen the necessity of being able to store or load intermediate data, such that scripts can be
interrupted and restarted at any stage of the transformation process. Therefore, all of the
base classes are accompanied with input-output functionality. As we use the Hierarchical
Data Format (HDF), stored data can quickly be retrieved and analysed by the user.

2.2 Usage

In this section, we briefly summarize the main steps and concepts necessary to perform the
transformation with quark, where the highlighted terms indicate classes available in quark.
In Fig. 2 an example of a Juypter Notebook for the usage of quark is shown correspondingly,
to demonstrate the easy accessibility for users with a bit of experience in programming with
Python. It is based on a quadratic formulation of the maximum colorable subgraph problem.

In general, the start is to implement an Instance, the container for the problem defining
parameters, as shown in cell 2 of Fig. 2. From the instance, the ConstrainedObjective is
constructed, which is a factory processing the instance data to obtain the objective function
and a collection of constraints, cf. cell 3. The latter can then be automatically transformed
into the corresponding penalty objective terms, which are contained in the ObjectiveTerms
together with the actual objective function. The weighted sum of the objective terms forms
the Objective, the final Ising/QUBO problem. The above steps are all executed in cell 5,
starting with the instantiation of a concrete instance with the parameters defined in cell 4.

All of the mentioned objective objects as well as the constraints contain Polynomials
representing the functions. The special polynomials PolyBinary and PolyIsing take
advantage of the restriction to either binary or spin variables and add specific preprocessing
or conversion methods. As apparent in the figure, also multi-index variables can be processed.

The ScipModel, used in cell 6, is an interface to the classical MILP solver SCIP [Be21]
based on the Python package PySCIPOpt [Ma16], which can solve a ConstrainedObjective
or a (small enough) Objective for comparison. The result of an optimization is stored in the
Solution. This includes not only the found variable assignment but also further information,
like the runtime, which are obtained during the solving process. In cell 8, we then show

4 Elisabeth Lobe

[1]: from quark import PolyBinary, ConstraintBinary, ConstrainedObjective, ScipModel

[2]: class MCSInstance():

def __init__(self, edges, colors):
self.edges = edges

self.nodes = set(node for edge in self.edges for node in edge)
self.colors = colors

[3]: class MCSConstrainedObjective(ConstrainedObjective):

@staticmethod

def _get_objective_poly(instance):
sum_[c in Colors] sum_[(n, m) in Edges] (1 * x_n_c * x_m_c)

return PolyBinary({(('X', node1, color), ('X', node2, color)): 1
for node1, node2 in instance.edges
for color in instance.colors})

@staticmethod

def _get_constraints(instance):
constraints = {}

for all n in Nodes: sum_[c in Colors] x_n_c == 1

for node in instance.nodes:
poly = PolyBinary({(('X', node, color),): 1 for color in instance.colors})
constraints[f'one_color_for_{node}'] = ConstraintBinary(poly, 1, 1)

return constraints

[4]: edges = [('a', 'b'), ('b', 'c'), ('b', 'd'), ('c', 'd')]

colors = ['red', 'blue', 'green']

[5]: instance = MCSInstance(edges, colors)

constrained_objective = MCSConstrainedObjective(instance=instance)

objective_terms = constrained_objective.get_objective_terms()

terms_weights = objective_terms.get_default_terms_weights()

objective = objective_terms.get_objective(terms_weights)

print(objective.polynomial)

+4 -1 X_a_blue -1 X_a_green -1 X_a_red -1 X_b_blue -1 X_b_green -1 X_b_red

-1 X_c_blue -1 X_c_green -1 X_c_red -1 X_d_blue -1 X_d_green -1 X_d_red

+2 X_a_blue X_a_green +2 X_a_blue X_a_red +1 X_a_blue X_b_blue +...

[6]: model = ScipModel.get_from_objective(objective)

solution = model.solve()

print(solution)

X_a_blue = 1 X_a_green = 0 X_a_red = 0

X_b_blue = 0 X_b_green = 1 X_b_red = 0

X_c_blue = 1 X_c_green = 0 X_c_red = 0

X_d_blue = 0 X_d_green = 0 X_d_red = 1

[7]: from dwave.samplers import SimulatedAnnealingSampler

[8]: sampler = SimulatedAnnealingSampler()

objective_ising = objective.to_ising()

sample = sampler.sample_ising(objective_ising.polynomial.linear_plain,

objective_ising.polynomial.quadratic,

num_reads=10)

sample.first.sample

[8]: {('X', 'a', 'blue'): -1, ('X', 'a', 'green'): -1, ('X', 'a', 'red'): 1,

('X', 'b', 'blue'): 1, ('X', 'b', 'green'): -1, ('X', 'b', 'red'): -1,

('X', 'c', 'blue'): -1, ('X', 'c', 'green'): 1, ('X', 'c', 'red'): -1,

('X', 'd', 'blue'): -1, ('X', 'd', 'green'): -1, ('X', 'd', 'red'): 1}

Fig. 2: Juypter Notebook exemplarily showing the usage of quark to obtain a corresponding Ising
problem from a given maximum colorable subgraph problem instance (where only the output was
slightly adjusted for better readability)

quark: QUantum Application Reformulation Kernel 5

how to solve the constructed objective with a D-Wave sampler, which works analogously to
the access of an actual machine but is freely available over the D-Wave API [D-23b].

The package quark contains more classes which take further specific hardware restrictions
into account. They form an anchor to the other packages complete_graph_embedding
and weight_distribution of our library, supporting embedded Ising problem formula-
tions [LK23]. In the package quapps, we have assembled a library of exemplary applications,
such as prime factorization or the FGA problem, with individual parameterized imple-
mentations of the ConstrainedObjective or the ObjectiveTerms based on the Instance
definition.

References

[Ba82] Barahona, F.: On the computational complexity of Ising spin glass models.
Journal of Physics A: Mathematical and General 15/10, pp. 3241–3253, 1982,
url: https://doi.org/10.1088/0305-4470/15/10/028.

[Be21] Bestuzheva, K.; Besançon, M.; Chen, W.-K.; Chmiela, A.; Donkiewicz, T.;
van Doornmalen, J.; Eifler, L.; Gaul, O.; Gamrath, G.; Gleixner, A.; Gottwald, L.;
Graczyk, C.; Halbig, K.; Hoen, A.; Hojny, C.; van der Hulst, R.; Koch, T.;
Lübbecke, M.; Maher, S. J.; Matter, F.; Mühmer, E.; Müller, B.; Pfetsch, M. E.;
Rehfeldt, D.; Schlein, S.; Schlösser, F.; Serrano, F.; Shinano, Y.; Sofranac, B.;
Turner, M.; Vigerske, S.; Wegscheider, F.; Wellner, P.; Weninger, D.; Witzig, J.:
The SCIP Optimization Suite 8.0, Technical Report, Optimization Online, Dec.
2021, url: http://www.optimization-online.org/DB_HTML/2021/12/8728.
html.

[D-23a] D-Wave Systems Inc.: D-Wave System Documentation, accessed 29/08/2023,
2023, url: https://docs.dwavesys.com/docs/latest/index.html.

[D-23b] D-Wave Systems Inc.: dwave-ocean-sdk, version 6.4.0, 2023, url: https:
//github.com/dwavesystems/dwave-ocean-sdk.

[Fa00] Farhi, E.; Goldstone, J.; Gutmann, S.; Sipser, M.: Quantum computation by
adiabatic evolution, 2000, arXiv: quant-ph/0001106.

[Ge23] German Aerospace Center (DLR) – Institute for Software Technology: quark,
version 1.0, 2023, url: https://gitlab.com/quantum-computing-software/
quark.

[Gl22] Glover, F.; Kochenberger, G.; Hennig, R.; Du, Y.: Quantum bridge analytics I: a
tutorial on formulating and using QUBO models. Annals of Operations Research
314/1, pp. 141–183, 2022, url: https://doi.org/10.1007/s10479-022-
04634-2.

[LK23] Lobe, E.; Kaibel, V.: Optimal sufficient requirements on the embedded Ising
problem in polynomial time. Quantum Information Processing 22/305, pp. 1–44,
2023, url: https://doi.org/10.1007/s11128-023-04058-2.

https://doi.org/10.1088/0305-4470/15/10/028
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://docs.dwavesys.com/docs/latest/index.html
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://arxiv.org/abs/quant-ph/0001106
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s11128-023-04058-2

6 Elisabeth Lobe

[Lu14] Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2/5,
2014, url: https://doi.org/10.3389/fphy.2014.00005.

[Ma16] Maher, S.; Miltenberger, M.; Pedroso, J. P.; Rehfeldt, D.; Schwarz, R.; Serrano, F.:
PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization
Suite. In: Mathematical Software – ICMS 2016. Springer International Publishing,
pp. 301–307, 2016, url: https://doi.org/10.1007/978-3-319-42432-3_37.

[Mc20] McGeoch, C. C.: Theory versus practice in annealing-based quantum computing.
Theoretical Computer Science 816/, pp. 169–183, 2020, url: https://doi.
org/10.1016/j.tcs.2020.01.024.

[SLJ19] Stollenwerk, T.; Lobe, E.; Jung, M.: Flight Gate Assignment with a Quantum
Annealer. Lecture Notes in Computer Science 11413/, pp. 99–110, 2019, url:
https://doi.org/10.1007/978-3-030-14082-3_9.

https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1007/978-3-030-14082-3_9

	Title
	Abstract
	Keywords

	Introduction
	Package Description
	Goals and Main Features
	Usage

	References

