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Declarative modeling and model driven software engineering seem to be two fields of re-
search with completely different focus. However, the term “modeling” is used by both
communities and both communities claim to use “declarative” techniques. Model-to-
model transformations transform software engineering models. Similar to declarative
modeling techniques they may be described using declarative model-to-model transfor-
mation languages. When it comes to finding similarities between both communities, these
languages therefore classify as interesting candidates.

Our model-to-model transformation language, called “Solverational” can be used to define
constraint problems in model-to-model transformations. Thereby, Solverational shows
that model-to-model transformations are an interesting case study for constraint solving
problems. QVT Relations, a declarative model-to-model transformation language, is us-
ing equations to set attribute values. Our languages enhances this concept by allowing to
replace the equalities by inequalities. To narrow down the domain of the attributes, sev-
eral inequalities may be used for a single attribute. Of course, this induces a constraint
satisfaction problem.

The transformation engine is based on an Eclipse plugin (JAVA IDE) mapping Solvera-
tional to a constraint logic programming language (and system), ECLiPSe (not the IDE).
Though this concept sounds simple, the implementation needs to be able to span con-
straints over associations and transformation rules. This is done by introducing “semi-
delayed-goals”, which are delayed until all model elements have been generated.

As an example we transform an abstract user interface model into a concrete graphical
user interface model using Solverational. A simple transformation rule maps Containers
from the abstract model to Panels in the concrete model. The size and position of the
Components residing in the Panel is determined during the transformation, but adheres
to constraints we provide using Solverational. The constraints intuitively define that the
Components may not be bigger as the Panel. The result is a complex CSP which can be
solved by the constraint solver used in the transformation engine.

Therefore, we contribute to the alignment of declarative modelling and model-to-model
transformation languages by examining the differences of models used for model-to-model
transformation and declarative models, by presenting model-to-model transformation as a
use case for declarative modeling, and by mapping Solverational to a CSP as an example
for a larger set of graph grammars.
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