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Modeling Classes of Body Sensor Networks

Marc Carwehl1, Wolfgang Reisig2

Abstract: Computer-embedded systems frequently manifest in diverse variants, featuring slight
differences in interfaces and functionalities, yet fundamentally grounded in a shared functional kernel.
To address this variability, we propose to employ a schematic model of the functional kernel, from
which concrete system instances are derived. This modeling methodology leverages well-established
principles from predicate logic and Petri nets, augmented with the dynamic extensions provided by the
Heraklit infrastructure. As a practical case study, we explore the realm of Body Sensor Networks
(BSNs), a domain increasingly pivotal in the realm of medical diagnosis. Our work showcases the
versatility and adaptability of our modeling framework in the context of BSNs, offering insights into
its potential applications in the broader landscape of embedded systems and beyond.
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1 Introduction

Body Sensor Networks (BSNs) have emerged as a vital component in modern health-
care [Ro18; YY06], providing real-time monitoring and evaluation of essential patient
data. These battery-powered, wearable devices employ a network of sensors attached to a
patient’s body, establishing connections through wired or wireless technology. Depending
on the patient’s current state, different vital data are to be controlled, in different frequencies,
causing different alarm patterns. To this end, a BSN may cover a number of sensors that
a nurse may switch on or off during a session. Characteristic patterns of measured data
may then solicit alarms. In the realm of BSNs, various versions exist, each tailored to
meet the unique needs of patients with varying medical conditions. While the sensors and
alarm patterns may differ for individual BSNs, the underlying structural and operational
principles remain consistent. This uniformity across BSNs underscores the significance of a
standardized modeling approach. With this standardized model, we can perform verification
tasks on a higher level. Among the many different versions of BSN; here we focus on
versions where:

• a set 𝑆 of sensors is given; however, only a subset of sensors is activated in a concrete
session of the BSN. A human supervisor (such as the nurse) may activate or deactivate
sensors,
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• a BSN operates in rounds; each round starts and ends in an idle state. Although
typically initiated by the patient or a nurse, rounds can also be triggered externally,

• data collection occurs during these rounds, with alarms triggered when the collected
data deviates from normal ranges.

In our approach, we represent a BSN architecture schematically, emphasizing both static and
dynamic aspects. The static characteristics are specified using a signature, a concept akin to
those found in first-order logic [Ba77] and algebraic specifications [Wi90]. Any instantiation
of this signature encapsulates the static attributes of a specific BSN. Dynamic aspects, on
the other hand, are depicted through predicates, which apply to a set of elements subject
to updates. These updates are defined using terms derived from the underlying signature,
reminiscent of high-level Petri nets. Thus, we rely on three core pillars: static (signature),
dynamic (predicates), and architecture (modules). To model BSNs comprehensively and
systematically, we employ the Heraklit modeling technique [FR21], [FR22b], [FR22a],
[FR22c] which offers a unique combination of detailed structure, abstraction capabilities,
operational behavior representation, and verification methods. In this paper, we demonstrate
how Heraklit enables us to represent concrete BSN systems and schemata for sets of
BSN systems concurrently in one unified notation. Specifically, we show how Heraklit
can be used to formally reason about safety properties of BSNs. By harnessing the power of
formal verification, we elevate the precision and reliability of BSN modeling, thus ensuring
the safe and effective application of this technology in healthcare. This work introduces
a robust framework for BSN design, paving the way for more advanced and dependable
healthcare solutions.

2 The Concept of Heraklit Modules

The architecture of a BSN is effectively modeled using Heraklit modules, a core concept
in our modeling approach. In the following section, we briefly introduce the fundamental
concept of Heraklit modules. Afterwards, we show modules of the BSN. At its core,
a Heraklit module consists of a graph-like inner structure (which can sometimes be
empty), and an interface. The power of Heraklit modules lies in their ability to be
composed along their interfaces to create complex systems. One of the most vital properties
of module composition, especially when dealing with extensive systems composed of
numerous modules, is associativity. In simple terms, for three modules 𝐿, 𝑀, and 𝑁 , the
following compositions must yield the same module:

(𝐿 · 𝑀) · 𝑁 and 𝐿 · (𝑀 · 𝑁). (1)

To maintain a high level of generality, the interface of a Heraklit module consists of labeled
gates. Intuitively, two modules 𝑀 and 𝑁 are composed by merging equally labeled gates
from their respective interfaces. Each of these merged gates then becomes an inner element
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of the composed module, 𝑀 ·𝑁 . However, it’s worth noting that this naive composition is not
associative which poses a challenge for modeling complex systems. Heraklit addresses
this challenge by introducing a modified composition method that retains the benefits of the
original idea while ensuring associativity. Specifically, the interface of a Heraklit module
comprises two sets of distinguished labeled nodes, ∗𝑁 and 𝑁∗, the left and the right gates
of 𝑁 . All other nodes of 𝑁 are considered inner nodes. Visually, a module is represented
as a box, with the left and right gates positioned on its left and right margin, respectively.
Figure 1 shows a module with four left gates and one right gate. No inner node is shown.

Fig. 1: Abstract view of a BSN.

Two such modules 𝑀 and 𝑁 can be composed, resulting in the module 𝑀 · 𝑁 . Equally
labeled gates of 𝑀∗ and of ∗𝑁 are merged to an inner node within 𝑀 · 𝑁 . Each inner node
found in 𝑀 or 𝑁 also becomes an inner node of 𝑀 · 𝑁 . The left interface ∗ (𝑀 · 𝑁) of 𝑀 · 𝑁
includes ∗𝑀 and all gates of ∗𝑁 without an equally labeled partner in 𝑀∗. Likewise, the
right interface 𝑀 · 𝑁∗ of 𝑀 · 𝑁 includes 𝑁∗ and all gates of 𝑀∗ without an equally labeled
partner in ∗𝑁 . The result is a modular composition that retains associativity, allowing us
to build complex systems from simpler modules. In Figure 2, we provide visual examples
to illustrate this composition process in more detail. For additional information on this
composition operator, please refer to [Re19; Re20].

Fig. 2: Composition of a BSN module.

In summary, modules form the foundation of Heraklit, providing a structured and
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associative approach to representing complex systems. These modules enable us to break
down the intricacies of BSNs into manageable components, fostering both clarity and
scalability in our modeling approach.

2.1 An abstract view of the BSN

In Fig. 1, we present an abstract representation of a BSN module, as defined within the
scope of our modeling approach. This abstract module encapsulates the essential elements
of a BSN, facilitating a comprehensive understanding of its interaction with its environment.
The gates depicted in Fig. 1 serve as the interfaces connecting the BSN module to its
environment. The left gates denote buttons for stakeholders to control and adjust the BSN,
and to receive alarms from the BSN; the right gate receives data from the sensors attached
to the BSN’s wearer. Each gate has an individual functionality. The five gates are:

• start button: This gate allows for the initiation of a new operational round within the
BSN;

• turn off sensor button: Intended for human operators of the BSN, this gate enables
to turn off one of the sensors;

• turn on sensor button: Similarly, this gate is designed for human operators and
allows them to turn on sensors;

• alarm: The alarm gate functions as a visual or auditory alert mechanism, providing
notifications or warnings as necessary.

• patient data: The right gate serves as the entry point for data from the sensors
attached to the patient. Each sensor transmits patient data at sensor-specific intervals
to the BSN, which is then processed and utilized as part of the BSN’s functionality.

To be more specific, we consider BSNs that have a set of sensors 𝑆, can trigger alarms 𝐴,
and handle patient data 𝑉 . Internally, we employ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠. A 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 is a set
of key-value pairs (𝑠, 𝑣), where each pair assigns some patient data 𝑣 ∈ 𝑉 to a sensor 𝑠 ∈ 𝑆3.
Note, that a measurement does not necessarily contain a value for each sensor in 𝑆.

2.2 Refinement of the BSN

In this section, we delve into the modules that constitute the core functionality of the BSN.
Fig. 2 presents abstract versions of five modules, offering a glimpse into their roles and
interactions within the broader BSN architecture:

• The On / Off module: This module serves as the initiator for a new operational round
of the BSN. In practical terms, when the BSN is in an idle state, a nurse can press a
control button.

3 We assume here that each key is unique, i.e., there is at most one value for any sensor in a measurement.
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• The Selection module: For each sensor integrated into the BSN, the Selection
module plays a pivotal role in storing the most recent sensor value, providing the
analysis module (gate sensor) with the most recent partial measurement for each
sensor.

• The Sensors module: This module encapsulates the behavior of each sensor within
the BSN: its most recent sensor value is updated by an external event. The module
provides updated single measurements to the Selection module. Thus, one instance
of this module is needed for each sensor for a particular BSN.

• The Analysis module: The analysis module is central to the BSN’s operation as it
is responsible for conducting new measurements and computing alarms. In every
operational round, the Analysis module fetches new partial measurements. An alarm
is computed based on this new measurement.

• The Manager module: As introduced in the earlier sections, a nurse can switch
sensors on or off in the BSN. The Manager module handles this behavior, updating
the sensors the Analysis module can rely on.

From the arrangement of these modules depicted in Fig. 2, it becomes apparent how these
modules can be composed to form the cohesive system illustrated in Fig. 1. When these
modules are composed, the resulting system offers the same interfaces as the abstract view,
underscoring the seamless integration and compatibility of the various components. Hence,
Fig. 2 can be conceived as a refinement of Fig. 1.

3 Modeling the Behavior of Modules in Heraklit

To model the behavior of a module, we employ Petri nets. More information on Petri nets
can be found, e.g., in the first Chapter of [Re16]. In this section, we discuss how the modules
shown previously in Fig. 2 can be modeled to exhibit the desired behavior of a BSN. To this
end, we refine the general notion of a module’s gate and depict each gate either as a state or
a transition. We discuss the different notions of modeling a gate as a state or as a transition
in this section. Additionally, we follow Heraklit’s notion of using algebraic structures to
model items and data. We will show that the same module with two different structures
describes two different systems.

3.1 A BSN with Three Sensors

Fig. 3 visually represents a specific BSN configuration. In the following, we will discuss the
behavior of each module:

• On / Off: The On / Off module contains the start gate which allows a nurse to start
an operational round of the BSN. Such a round can be started at any point when there
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is a token on place finished, resembling that the previous round has concluded. This
resembles an idle state. To start a new round, the token is consumed by the start
transition, and a token is emitted on the start place in the module’s right interface.

• Manager: The Manager module enables a nurse to turn sensors on or off. To this
end, the module features two transitions in its left interface. Both transitions can only
be enabled when the latest round has concluded, i.e., the system is in an idle state.
To turn a sensor on, a measurement for the sensor is added to the Analysis module
(place measurements). However, the value associated with the newly added sensor
may be outdated. Therefore, we replace it with a dummy value ⊥. Similarly, a sensor
can be turned off when the system is in an idle state by taking the corresponding
measurement out of the Analysis module (place measurements). The places sensors
on and sensors off store information about the sensors that are turned on or off,
respectively.

• Sensors: Moving on to its right interface, a BSN is connected to real sensors.
The Sensors module handles interaction with these Sensors. The transition patient
data can be invoked anytime by a sensor to update its measurement (place single
measurements).

• Selection: The measurements (place single measurements) are made available to the
Analysis module by the Selection module. In essence, the Selection module can fetch
a measurement (place partial measurement) for any of the sensors (place sensor).

• Analysis: Finally, the Analysis module is started by the On / Off module and requests
new measurements for the sensors using its interface to the Selection module. Once
all measurements are gathered (place partial measurements), they are merged into
one measurement (transition d). An alarm is computed at transition e and output to
the nurse at place Alarm which resembles one of the left gates of a BSN. Finally, a
token is put on the finished place to depict the end of the round.

Fig. 3: Petri nets depicting behavior inside the five modules.

To improve the patient’s comfort and system efficiency, not all sensors should be engaged in
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every round. For instance, sensors like blood pressure sensors, known for their potential
discomfort to the patient, are selectively chosen. A refinement of the analysis module utilizes
a function f to determine which activated sensors to engage in a round. The refined module
is shown in Fig. 4 while Fig. 5 shows a structure for a BSN with three sensors.:

• Refined Analysis: In the refined analysis, a function 𝑓 is invoked at transition a to
dissect the set of activated sensors. Those that are engaged in this round (place 1)
are used to request new measurements from the Selection module. For disengaged
sensors, their measurements (place 3) are added to the freshly collected measurement
at transition e to compute an alarm. Afterward, the measurement is changed once
more at transition f where values for disengaged sensors are re-set to the dummy
value ⊥. The round concludes with a token on the finished place.

Fig. 4: Refined version of the Analysis Module.

This BSN system (cf. Fig. 3, 4) adheres to the abstract view of BSNs discussed earlier (cf.
Fig. 2). It serves as a concrete instantiation of how the system’s interfaces can be interacted
with by the external environment. Specifically, the start gate of the On/Off module is
modeled as a transition, symbolizing the system’s responsiveness to external triggers. In
this case, the nurse can initiate a new round by triggering this transition. Similarly, the turn
sensor on and turn sensor off gates are depicted as transitions, representing the activation
or deactivation of sensors. Importantly, these transitions can only be executed when the
BSN is in an idle state, as there must be a measurement present on the measurements gate.
This condition is inherently satisfied only during the BSN’s idle state, a claim that we will
formally prove in Section 6. Finally, the alarm gate is modeled as a place, depicting it as
a light that can be on or off, depending on the patient’s health status. It’s noteworthy that
Heraklit permits the modeling of gates as both places and transitions. When a gate is
represented as a transition, it signifies the capability to trigger specific system behaviors, as
exemplified by the start gate. Conversely, when a gate is depicted as a place, it signifies the
capacity to convey data, as demonstrated by the alarm gate.
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3.2 A BSN with 10 sensors

It is evident that various use cases may necessitate different BSN configurations. For instance,
another patient may require a different set of sensors compared to the BSN previously
described. It’s important to note that altering the set of sensors does not necessitate
changes to the modules or their composition. However, the system’s structure must adapt to
accommodate the additional sensors within the corresponding domain. Functions, constants,
and data representations must also be adjusted accordingly.

Fig. 6 shows one possible structure for a BSN with 10 sensors. This depiction underscores
Heraklit’s adaptability in accommodating diverse variants of a system model. While, in a
BSN, the sensors and their properties may vary, the core modules and their interactions
remain consistent with the previously discussed BSN structure (cf. Fig. 4).

This BSN configuration serves as a testament to the flexibility of the Heraklit modeling
approach, as it can seamlessly represent various BSN scenarios with distinct sets of sensors,
each tailored to address specific patient needs and medical requirements. This versatility
ensures that the Heraklit model can effectively capture the complexity and nuances of
real-world systems.
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Domains
Sensor = {thermometer, pulse, blood pres-
sure, glucometer}
Alarm = {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}
patient data = N
control = {•}

Derived Domains
measurements: P({(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) |
𝑘𝑒𝑦 ∈ Sensor and
𝑣𝑎𝑙𝑢𝑒 ∈ patient data ∪ {⊥}
and each key is unique })
Functions
alarm : measurements → Alarm
alarm(m) = 𝑡𝑟𝑢𝑒, iff
(𝑥, 𝑑) ∈ 𝑚 with 𝑑 = ⊥ or
(𝑥 = thermometer and 𝑑 > 40) or
(𝑥 = pulse and 𝑑 > 180) or
(𝑥 = glucometer and 𝑑 > 200);
𝑓 𝑎𝑙𝑠𝑒 otherwise
f : measurements → measurements
𝑓 (𝑚) = 𝑚 \ {(𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟, 𝑑)}
if (𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟, 𝑑) ∈ 𝑚 and 𝑑 < 40;
𝑚 otherwise
Constants
m : measurements
𝑚 = {(𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟, 38), (𝑝𝑢𝑙𝑠𝑒, 70)}
S : P(𝑆𝑒𝑛𝑠𝑜𝑟) S = {thermometer, pulse,
blood pressure, glucometer}

Variables
M, N, Y, Y’, Z : measurements
s : Sensor
d : patient data ∪{⊥}
d’ : patient data

Fig. 5: Structure S1.

Domains
Sensor = {thermometer1, pulse1, blood
pressure1, glucometer1, oxygen satura-
tion1,
thermometer2, pulse2, blood pressure2,
glucometer2, oxygen saturation2}
Alarm = {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}
patient data = N
control = {•}
Derived Domains
measurements: P({(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) |
𝑘𝑒𝑦 ∈ Sensor and
𝑣𝑎𝑙𝑢𝑒 ∈ patient data ∪ {⊥}
and each key is unique})
Functions
alarm : measurements → Alarm
alarm(m) = 𝑡𝑟𝑢𝑒, iff
(𝑥, 𝑑) ∈ 𝑚 with 𝑑 = ⊥ or
(𝑥 = thermometer1 and 𝑑 > 40) or
(𝑥 = pulse1 and 𝑑 > 180) or
(𝑥 = glucometer1 and 𝑑 > 200);
𝑓 𝑎𝑙𝑠𝑒 otherwise
f : measurements → measurements
𝑓 (𝑚) = 𝑚 \ {(𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟1, 𝑑)}
if (𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟1, 𝑑) ∈ 𝑚 and 𝑑 < 40;
𝑚 otherwise
Constants
m : measurements
𝑚 = {(𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟1, 38), (𝑝𝑢𝑙𝑠𝑒2, 70)}
S : P(𝑆𝑒𝑛𝑠𝑜𝑟)
S = {thermometer1, pulse1, blood pres-
sure1, glucometer1, oxygen saturation1,
thermometer2, pulse2, blood pressure2,
glucometer2, oxygen saturation2}
Variables
M, N, Y, Y’, Z : measurements
s : Sensor
d : patient data ∪{⊥}
d’ : patient data

Fig. 6: Structure S2.
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4 Using Signatures in Heraklit

Heraklit employs the well-established spirit of predicate logic [Ba77] and Algebraic
specifications [Wi90] to further generalize system models. To this end, we define a signature,
Σ, i.e. a collection of symbols for sets of sensors, measurements, and symbols for functions
that map from one domain to another. Finally, the signature captures symbols for constants,
including initial markings, and variables in the signature that can be employed when
modeling with Petri nets.

4.1 Signature for BSNs

Domain Symbols
Sensor
Alarm
patient data
control
Derived Domain Symbols
measurements
Function Symbols
alarm : measurements → Alarm
f : measurements → measurements
Constant Symbols
m : measurements
S : P(𝑆𝑒𝑛𝑠𝑜𝑟)
Variables
M, N, Y, Y’, Z : measurements
s : Sensor
d, d’ : patient data ∪{⊥}

Fig. 7: Σ. Signature for BSNs.

Fig. 7 shows the signature Σ. Σ has symbols for
the sensors, alarms, patient data used in the BSN,
and control tokens. Additionally, Σ contains symbols
for functions that determine the alarm, and which
sensors to engage in a round. Finally, the constant
symbol𝑚 depicts the initial measurement with which
the BSN starts and the symbol 𝑆 depicts the set of
all sensors.

4.2 Instantiations of Σ

As usual in logic, an instantiation of Σ is a structure,
that replaces each symbol in Σ by a corresponding
set, function, or element (Predicate logic denotes
such instantiations as models). For example, the struc-
tures S1 and S2 of Section 3 are instantiations of Σ.
Obviously, Σ generates infinitely many instantiations.

5 Making use of the concept of modularity in Heraklit

With Heraklit’s focus on modules, it becomes easy to perform behavioral changes locally,
without having to change the entire system model. In particular, changes can often be
constrained to a small number of modules. In this section, we discuss different variants of
BSNs and show how the system model can be changed to accommodate them. To showcase
how locally constrained the changes are, we only concentrate on instances of modules that
have been changed, while unchanged modules w.r.t. the system from Fig. 3 with the Analysis
module from Fig. 4 remain abstract. This shall again highlight to the reader that changes
are made only locally. In the remainder of this section, we will show different variants of
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modules in the BSN. To highlight the changed modules, we keep an abstract representation
of all modules that have not changed. Incidentally, the algebraic specification Σ remains
intact for any of the changes we discuss in this section.

5.1 Displaying the idle states

For the On / Off module, it is intuitively useful to accompany the start button with a display
in the left interface, showing whether the BSN is in an idle state. The place finished can
serve this role. The module’s right interface contains this place already; so the place will
now be located in both the left and the right interface. In the left interface, we will label it
ready. The Heraklit framework allows a gate to serve coincidentally in both interfaces of
a module. This raises the problem of the graphical representation of a node that belongs to
both interfaces. Graphically satisfying are two instances of the node representation, linked
by a double line. Fig. 8 shows an example.

Fig. 8: Refined version of the On / Off module.

5.2 Displaying the activated sensors

The left interface of the abstract models of Fig. 1 and Fig. 2 includes the two gates labeled
turn off sensor, and turn off sensor. However, before pressing such a button, a user would
prefer to understand whether or not pressing the buttons will have an effect, i.e., to understand
whether or not the corresponding sensor is already active or not. To this end, the places
sensors off and sensors on of Fig. 4 are moved from the inside of the module to the left
interface, as shown in Fig. 9. These places can be conceived of as displays for the activation
status of the corresponding sensors. Using the idle state display described above, the user
will also see if the BSN is in an idle state and whether the activation will be handled or not.
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Intuitively, places are adequate for this purpose as the goal is to provide information to the
environment, in contrast to the buttons we model as transitions.

Fig. 9: Refined version of the Manager module.

5.3 Enforced Updates

The system schema and model in Figs. 1, 4 model the case where the most recent sensor
data are employed. This includes the case of multiple uses of the same measurements. In
some cases, however, it may be interesting to have a system that can trigger a sensor to
generate a fresh value. Fig. 10 models this case by forcing the sensor to get new data in the
right interface.

Fig. 10: Refined version with enforced updates.

5.3.1 Timeouts

An enforced update causes a deadlock in case the sensor is broken or does not react for
whatever reason. For this case, a timeout mechanism may be installed, returning the previous
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value or the dummy value ⊥, and informing the users about the timeout event. Fig. 11 models
this case, employing an external trigger, such as a timer, to depict a timeout.

Fig. 11: Refined version with timeouts.

6 Verification

In the realm of safety-critical systems like BSNs, ensuring that the system behaves precisely
as specified is of paramount importance. Stakeholders often demand rigorous proofs
to guarantee the system’s reliability. Fortunately, Heraklit leverages well-established
concepts, including predicate logic and Petri nets, providing a structured framework for
systematic verification.

In this section, we illustrate the power of Heraklit’s foundation by showcasing a pivotal
property of the BSN model. Before delving into the details, it’s essential to establish
some standard terminology and notations for Petri nets and Petri net schemata, which are
introduced in [Re98]. Our earlier discussion highlighted the cyclic nature of BSN operations,
where each round starts and concludes in an idle state. We now turn our attention to the
verification of this crucial property.

To rigorously verify the idle state in BSNs, we introduce the concept of idle markings within
the Heraklit framework. An instantiation of the module Analysis in Fig. 4 is considered
idle if: (i) The place measurements contains a token (of type measurement), (ii) either the
place finished or the place start contains a token (represented as a black dot), and (iii) no
other place within the Analysis module contains a token.

Surprisingly, it turns out that property (i) alone is sufficient to characterize idle markings
effectively. This leads us to the following theorem:

Theorem 1. Let 𝐼 be an instantiation of the module in Fig. 4 of the system shown in Fig. 3.
A reachable marking 𝑀 of 𝐼 is idle iff the place measurements contains a token.
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To prove this theorem at the schematic level, we exploit a structural property of the schema.
We represent S1 as a matrix, A, where each place p of S1 contributes a line, and each
transition contributes a column. An entry A(p,t) in this matrix collects the inscriptions of
the arcs that connect place p and transition t. Table 1 shows this matrix.

Tab. 2: Invariants and initial marking.

𝑀0 i1 i2 i3 i4 i5 i6
finished • |x|
start |x|
measurements
alarm
1 |x| pr1(x)
2 pr1(x)
3 |x| pr1(x)
4 |x|
5 |x| pr1(x)
6 |x| |x| pr1(x)
sensor |x|
partial measurements |x|
sensors on elm(dom( m))
sensors off elm(S) \elm(dom( m))
single measurements elm(m)

We formulate an equational system, 𝐴𝜏 · 𝑥 = 0, where each entry of a solution vector x
(referred to as an invariant, found in Table 2) is a multiset of terms with one variable. This
system is instrumental in proving the fundamental property of invariants, which claims a
property of all reachable markings:

Theorem 2. For each invariant x, each instantiation I, each reachable marking M of I, and
𝑀0 denoting the initial marking as shown in Table 2 holds:

𝑥 · 𝑀 = 𝑥 · 𝑀0.

Proof of Theorem 2 can be found in the literature. To illustrate, one of the invariants, 𝑖1,
implies that the number of tokens on places measurement and place 4 sums up to 1. This,
in turn, guarantees that a token on place measurement implies place 4 contains no token.
Corresponding arguments with the invariants 𝑖2, 𝑖3, and 𝑖4 imply property (iii) of the
definition of invariants. We also introduce an intriguing invariant, 𝑖5, which implies property
(ii) of the definition of idle markings. It signifies the balance between tokens on finished and
start relative to measurement. Lastly, a more intricate invariant, 𝑖6, demonstrates that each
reachable marking accurately represents each sensor exactly once in the Analysis module.
These compelling proofs not only validate the integrity of the BSN model but also exemplify
the robustness of Heraklit in facilitating systematic and rigorous verification processes.
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7 Related Work

Rodrigues et al. [Ro18] introduced a valuable approach by modeling the requirements of a
BSN using a Contextual Goal Model (CGM). Their methodology involves the construction
of explicit goals that the BSN aims to fulfill, followed by the design of tasks and sub-tasks to
achieve these goals. Subsequently, the authors developed a model of the BSN, represented as
timed automata, aligning with their CGM. Using timed automata, they conducted property
verification through temporal logic using model-checking techniques. While Rodrigues
et al.’s work successfully models and verifies a specific BSN instance, it is important to
note that their formalism does not readily facilitate abstraction to a class of similar systems.
Similar advancements employing timed automata have been made by Vogel et al. [Vo23].
Their work contributes to the modeling and verification of BSNs using timed automata,
adding to the body of research in this domain. An additional approach has been conducted
by Araújo [Ar23] who modeled a BSN with OpenModelica. This approach provides novelty
regarding the continuous data flow. However, it is crucial to highlight that while these
approaches excel in modeling and verifying individual BSN instances, they lack the capacity
for abstract representation applicable to a broader class of systems, as Heraklit achieves
through its use of structures and signatures. Carwehl et al. [Ca23] recently explored the
verification of a dynamically changing BSN, focusing on changes specified by their Property
Adaptation Patterns. Their work addresses the important aspect of adaptability within BSNs.
Nevertheless, it is worth noting that despite their valuable contributions, the use of runtime
verification in their approach requires a running system, while the verification shown in this
paper can be performed earlier in the development cycle.

In summary, while prior research has made significant strides in modeling and verifying
BSNs, our Heraklit framework distinguishes itself by its unique ability to abstract to
classes of similar systems through structures and signatures, modules and their composition.
This feature empowers Heraklit with a high degree of versatility and generality, making
it an advantageous choice for modeling and analyzing complex applications with dynamic,
adaptive, and evolving characteristics.

8 Conclusion

In this paper, we’ve demonstrated the effectiveness of Heraklit’s architectural, static,
and dynamic modeling approach in capturing a class of BSNs. By leveraging established
techniques such as Petri nets, algebraic structures, and modules, we successfully conducted
formal reasoning about the safety properties of these systems. For future work, we aim to
enhance our model by incorporating more insights from healthcare professionals. Moreover,
the verification techniques we’ve applied can serve as a valuable tool in discussions with
experts. They can aid in precisely assessing the behavior of BSNs and identifying potential
safety issues. This can facilitate productive dialogues between modelers and domain experts,
leading to more effective and trustworthy BSN systems for healthcare.
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