
Available-To-Promise on an In-Memory Column Store

Christian Tinnefeld1, Stephan Müller1, Helen Kaltegärtner1, Sebastian Hillig1,

Lars Butzmann1, David Eickhoff1, Stefan Klauck1, Daniel Taschik1,

Björn Wagner1, Oliver Xylander1, Cafer Tosun2, Alexander Zeier1, and Hasso Plattner1

1 Hasso Plattner Institute, University of Potsdam, August-Bebel-Str. 88, 14482 Potsdam,

Germany, Email: (firstname.lastname)@hpi.uni-potsdam.de

2 SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany, Email:

(firstname.lastname)@sap.com

Abstract: Available-To-Promise (ATP) is an application in the context of Supply
Chain Management (SCM) systems and provides a checking mechanism that calcu-
lates if the desired products of a customer order can be delivered on the requested date.
Modern SCM systems store relevant data records as aggregated numbers which im-
plies the disadvantages of maintaining redundant data as well as inflexibility in query-
ing the data. Our approach omits aggregates by storing all individual data records
in an in-memory, column-store and scans through all relevant records on-the-fly for
each check. We contribute by describing the novel data organization and a locking-
free, highly-concurrent ATP checking algorithm. Additionally, we explain how new
business functionality such as instant rescheduling of orders can be realized with our
approach. All concepts are implemented within a prototype and benchmarked by us-
ing an anonymized SCM dataset of a Fortune 500 consumer products company. The
paper closes with a discussion of the results and gives an outlook how this approach
can help companies to find the right balance between low inventory costs and high
order fulfillment rates.

1 Introduction

There is an ongoing discussion in the database community to what extent applications

can benefit from a database management system (DBMS) that exactly suits their needs.

One central paper in this discussion is written by Stonebraker and Cetintemel [Sc05] who

argument that applications such as text search, scientific applications, data warehousing,

and stream processing can benefit from a performance, maintenance, and functionality

perspective by using application specific database engines. As stated by Krueger et al.

[KTG+10], we think that this statement is also true for the domain of traditional enterprise

applications which we want to exemplify in this paper with the ATP application.

ATP provides a checking mechanism to obtain feasible due dates for a customer order.

This is done by comparing the quantities of products which are in stock or scheduled

for production against the quantities of products which are assigned to already promised

orders [Dic05, SZ03]. A common technique in current SCM systems is using aggregated

values for keeping track of the different quantities, which results in having a separate

aggregate for each different product. This means that e.g. a new product in stock would

667

increase the value of such an aggregate while the assignment of products to a confirmed

customer order would decrease it. Although the use of aggregates reduces the necessary

amounts of I/O operations and CPU cycles for the single ATP check itself, it introduces

the following disadvantages:

Redundant Data. One problem that arises in association with materialized aggregates is

the need for data replication and therefore for complex synchronization strategies

[Pla09]. In order to preserve a consistent view on the data across the whole system,

every write operation has to be propagated to all replications. Even if the updates

are triggered immediately, they still imply delays causing temporary inconsisten-

cies. Additionally, even if the amount of I/O operations and CPU cycles is reduced

to a minimum for the check itself by using aggregates, the overall sum of needed

operations might be higher due to synchronization as well as maintenance and costly

back calculation of the aggregates.

Exclusive Locking. A related issue consists of locking for update operations. All mod-

ifications to an aggregate require exclusive access to the respective database entity

and block concurrent read and write processes. The downside of locking is obvious,

as it queues the incoming requests and affects the performance significantly in case

of a highly parallel workload.

Inflexible Data Querying. Evidently, the gain in performance concerning isolated queries

comes at the cost of less flexibility. For ATP systems in particular, this fixedness

poses major restrictions. The rolled up data structures are tailored for a predefined

set of queries. Unforeseeable operations referring to attributes that were not consid-

ered at design time cannot be answered with these pre-aggregated quantities. Those

attributes include for instance shelf life, product quality, customer performance and

other random characteristics of products, orders, or customers. Additionally, due

to the use of aggregates the temporal granularity of the check is fixed. Once the

aggregates are defined and created based on e.g. the available quantities per day, it

is not possible to perform ATP checks on an hourly granularity.

Inflexible Data Schema Extensions. The previously mentioned inflexibility of not being

able to change the temporal granularity of a single check indicates another related

disadvantage: the inability to change the data schema once an initial definition has

been done. The change of the temporal check granularity or the inclusion of a previ-

ously unconsidered attribute is only possible with a cumbersome reorganization of

the existing data.

No Data History. Maintaining aggregates instead of recording all transactions enriched

with information of interest means to lose track of how the aggregates have been

modified. In other words, no history information is available for analytics or for

rescheduling processes.

As stated above, the evolution of business needs indicates an increasing relevance of so-

phisticated analytical applications. In order to realize immediate answer to arbitrary an-

alytical queries without long lasting ETL processes, raw data in a format that enables

668

on-the-fly processing is needed. Facing these demands, recent trends are heading towards

column-oriented in-memory databases. In-memory databases keep all data in main mem-

ory and therefore facilitate fast and random access. To be able to hold billions of data

records in memory, high compression rates are mandatory. By storing the data column-

wise, generally suitable compression techniques can be applied. The main reason for

good compression results achievable in column-stores is the similarity of the entries in a

column, since the compression ratio is often dominated by the number of distinct values

[KGT+09].

Another advantage coming along with column-stores is that many operations, notably

aggregations, equi-joins, and selections, can be performed directly on compressed data

[AMH08, GS91]. Consequently, fewer entries have to be decompressed for reconstruction

of tuples. This strategy called lazy decompression [CGK01] helps to save CPU cycles for

decompression. Reducing computing time is particularly in in-memory databases highly

relevant, because I/O costs are extremely low, so that CPU time influences the overall

execution time significantly [HLAM06]. This technique is especially beneficial in the

context of insert-only as updates do not directly require a decompression of already stored

values, but result in appending new values for already existing tuples. Furthermore, the

read-optimized columns can go along with a smaller, write-optimized so called delta store

which is used for updates.

Consequently, in column-oriented in-memory databases aggregates can be calculated by

processing the appropriate column without the need to read the entire table from disk

or decompress it in advance. Thus, column-oriented database systems can operate on

huge datasets efficiently and thereby comply with the requirements of an OLAP system

very well [BMK99]. They also bring along a new level of flexibility, since they are not

confined to predetermined materialized aggregates. Write operations are not limited by

the read-optimized data structure as they are performed in the delta store.

The remainder of this paper is organized in the following way: Section 2 presents the in-

volved concepts which are needed for executing an ATP check on a columnar database.

This includes aspects such as data organization, the check algorithm itself, and how to deal

with concurrency. Section 3 includes the description of a prototypical implementation of

the concepts and corresponding benchmarks which were done on an anonymized SCM

dataset of a Fortune 500 consumer products company. The prototypical implementation

has been done in the context of a joint research project between the Hasso Plattner Insti-

tute and SAP. Section 4 discusses the possible business implications of this approach by

listing new or improved functionalities in the context of ATP. Section 5 concludes with a

discussion of the results and an outlook how this approach could be used for taking ATP

to the next level by providing a profit-maximizing ATP checking mechanism.

2 Involved Concepts

With a general overview of the ATP check and its limitations with the use of aggregates,

this section provides the underlying concepts of the prototypical ATP application based

669

id : int
cvc_id : int
order_id : int
demand_id : int
source_id : int

quantity : bigint
demand_quantity : bigint

date_granularity : string
object_type : int

date_id : int
date_year : int
date_quarter : int
date_month : int
date_day : int
date_hour : int
date_minute : int

Fact

id : int
material_no : string
name : string
price : decimal
...

CVC

id : int
name : string
...

Source

id : int
status : int
customer_id : int
created : int

Order

id : int
name : string
company : string
...

Customer

Figure 1: Simplified physical schema as used in prototype

on a columnar, in-memory database. Subsection 2.1 introduces the main classes in the

ATP data model and their physical representation in the database. The subject of Subsec-

tion 2.2 are two algorithms to calculate the due dates focusing on their applicability on a

column-oriented database system. In Subsection 2.3 finally the strengths and weaknesses

of different strategies to handle concurrent ATP requests are discussed.

2.1 Data Organization

In this subsection, a simplified data model sufficient for a basic understanding of the pro-

totype is presented. The information relevant to an ATP system are primarily line items

of sales orders also referred to as customer demands, delivery promises or conducted out-

puts, the stock level, and planned production inputs. These types of transaction data are

consolidated in one table with an object type column for identification, forming the fact

table in the star schema [Mar04].

Essentially, an entry in the fact table indicates how many items of a product leave or

enter the stock on a specified date. The products are listed by their characteristic value

combinations (CVC), to be uniquely identified. In the fact table, there are two quantity

columns. This is due to the fact that the customer demands indicate what was ordered and

do not represent planned stock movements, which are stored in the promises. To be able

to provide information about the inventory, only planned and conducted stock movements

but not the customer demands have to be added up. For this reason, the customer demands

have a separated quantity column, the demand quantity. This way, they do not have to be

filtered when aggregating the stock movements in the quantity column. Recurring data,

670

Order PromiseDemand Input Plan

Date

CVC

Source

Customer

Transaction

Output

Figure 2: Simplified ERM of the ATP process

id date id cvc id demand id demand quantity quantity object type

5 1286668800 1 5 -45 0 3

6 1286668800 1 5 0 -45 1

7 1286409600 1 0 500 500 2

8 1286323200 2 3 -10 0 4

Table 1: Fact table extract

such as the customer who ordered the product or the source of an input, be it a production

plant or supplier is stored in dimension tables.

To avoid expensive joins with a potentially large Date table, this dimension is de-normalized,

accepting a certain degree of redundancy. The physical data model as implemented in the

prototype is shown in Figure 1. For the sake of clarity, the following examinations ab-

stract from this and other optimizations. The business objects used in the application are

illustrated in Figure 2.

As a typical feature of a star schema, most columns in the fact table are foreign keys to

dimension tables. It can be expected that the content of the majority of dimension tables is

static. The entries in the Date table will only be updated, when the fiscal year comes to an

end and the planning horizon changes. Just as reasonable is the assumption that the content

of the CVC and Source tables is constant. Changes to these tables are only necessary, if

the company introduces a new product, puts a production plant into operation, or goods

are purchased from a new supplier. As a consequence, the total volume of data can be

reduced by storing recurring information in dimension tables.

In Table 1 an extract from the fact table, with the redundant date specifications date year

to date minute as well the columns order id, source id, and date granularity left out, is

provided. The first row with id 5 represents a customer demand with the computed deliv-

ery promise in the second row. This relation can be seen by the foreign key demand id,

which is set to 5 in the promise entry and hence points to the demand row. Besides, the

object types 3 and 1 identify these rows as demand and promise. Since they correspond in

quantity and date, the request can be fulfilled in time.

671

The third column is an input, characterized by the object type 2, of 500 items to the same

product that was requested by the afore mentioned demand. Inputs do not refer directly

to a customer demand in order to stay as flexible as possible when it comes to unexpected

loss of stock and a redistribution of resources is required. So, the foreign key demand id

is a null pointer. One might wonder, why the quantity is replicated in the column de-

mand quantity. This way, we retain the option to run the ATP check against the requested

instead of the promised quantities and thereby favor already booked orders over new ones.

Object type 4 identifies withdrawals from stock made to accomplish a customer order.

Basically, a promise is turned into such an output, as soon as the items are taken from the

warehouse and on their way to the customer. To save the connection between demand and

outputs, the outputs also store the id of the demand in the dedicated foreign key column.

The last row in Table 1 is an example for an output. The demand it refers to, the fact with

id 4, is not listed in the extract.

2.2 ATP check Algorithms

The core functionality of an ATP application is the determination of earliest possible de-

livery dates based on the inventory. The available capacities accrue directly from stock,

inputs, and previously confirmed orders. This subsection suggests and evaluates two solu-

tions to this problem, addressing the decisive ATP requirements and the characteristics of

our prototype. The two algorithms are equal in terms of correctness and complexity but

differ in performance depending on the underlying architecture and dataset.

2.2.1 Candidate Check

The candidate check constitutes the first alternative to compute due dates. The name

candidate check is derived from the supposed promises, the so called candidates, which

are created in course of the check. Basically, the algorithm operates on a chronological

list of dates associated with the aggregated inputs and outputs for the particular dates.

Thereby, dates with a total quantity of zero will be omitted to reduce the runtime. Such

(date, quantity) - tuples will be referred to as buckets and chronological lists of buckets as

time series. Apart from the time series, the algorithm maintains a list of candidate buckets

as temporary promises, also sorted by date in ascending order. As an interim promise,

a candidate indicates the quantity that is allocated on the specified date for the current

demand. The word temporary is meant to point out the potential deletion or reduction of

the candidate while iterating over the remainder of the time series. Those candidates that

can be retained until the algorithm terminates, will be written as promises to the database.

If there is only one candidate with the desired quantity on the desired date, the order will

be fulfilled in time.

In the following, details of the algorithm, particularly the determination of candidates,

will be explained. To identify candidates, the total stock level for each date is required.

Therefore, a new data structure is deduced from the original time series, henceforth termed

672

date aggregated quantity accumulated time series

MO 2 2

TU 1 3

WE -2 1

TH 1 2

FR 2 4

Table 2: Accumulated time series

+2 -2+1 +1 +2 +2 +1 -2+2

-1

+1 -2+2

-1

+1 +2+1

-1 -1

Aggregated time series I. Computation up to TU

MO TU WE TH FR MO TU WE TH FR MO TU WE TH FR MO TU WE TH FR

identified candidates

time series values

IIIb. Revoke earlier identified candidates IIV. Finish processing

input candidate aggregated value stock level, including candidates
confirmation

MO TU WE TH FR

IIIa. Run into inconsistent state

-2+2

-3

+1

On WE further demand
of 2 items would result
in negative stock level

Thus the original candidate is
reduced to 1 item

2 2stock level 03 2 -2 2 0 22 0 0 1

+2

-3

+1

II. Add demand of 3 on TU

MO TU WE TH FR

Demand of 3 items
completely consumes

available stock

2 0

Figure 3: Candidate check example

accumulated time series as can be seen in Table 2.

From the very beginning of the planning horizon, all quantities are added up to the desired

date. Reaching that point in the time series, the creation of candidates starts. If the accu-

mulated quantity is positive, the first candidate will be initialized. Generally, the quantity

of a candidate is limited to the stock level of the respective date, in this case the desired

date. The maximum quantity of a candidate is logically the desired quantity. For further

processing, the accumulated quantity is reduced by the quantity of the new candidate. As

long as the desired quantity has not been completely allocated, candidates will be created

while processing the time series.

When the stock level drops below zero due to other promises or a decline in production,

the list of candidates has to be corrected. Thereby, the candidate quantities are deallocated

until the stock level returns to zero or the list is exhausted. To ensure best possible de-

livery dates, the list is updated descendingly, removing the latest buckets first. The entire

candidate algorithm is formally described in Listing 1. To highlight the essential control

flow, the readjustment of the candidate list in case of a negative accumulated quantity is

not listed on instruction level but hidden in the method truncate qty, which is invoked on

the candidate list, cf. Listing 1 Line 26.

To improve the understanding of the algorithm, a walk-through with a concrete example

is undertaken. The available stock including one output, represented in the first diagram

in Figure 3, and a new order of three items for Tuesday are the starting point for this

excursion. The first diagram shows the time series with a negative bucket on Wednesday.

This might be confusing in the first place, as it appears to be an overbooking. In fact, it is

not an overbooking, which becomes obvious when calculating the accumulated time series

673

as seen in Table 2. The three inputs on Monday and Tuesday compensate the outputs on

Wednesday.

1 def candidates(time_series, desired_date, desired_qty):

2 candidates = []

3 acquired = 0

4 accumulated = 0

5 for date, qty in time_series:

6 accumulated += qty

7 # do not start before desired_date

8 if date < desired_date:

9 continue

10 if accumulated > 0:

11 wanted = desired - acquired # pending quantity

12 if wanted > 0:

13 if accumulated >= wanted:

14 # total covering of wanted quantity

15 candidates.append((date, wanted))

16 acquired = desired

17 accumulated -= wanted

18 else:

19 # partial covering

20 candidates.append((date, accumulated))

21 acquired += accumulated

22 accumulated = 0

23 elif (accumulated < 0) and (len(candidates) > 0):

24 # acquired too much, give back until

25 # accumulated is not negative

26 truncate_qty(candidates, accumulated, acquired)

27 return candidates

Listing 1: Candidate Check Algorithm

Going one step back, the accumulated time series is built up to Tuesday. As already men-

tioned and reflected in Line 8 in Listing 1, the creation of candidates starts at the desired

date, which is Tuesday in this example. The accumulated quantity, which results from the

Monday and the Tuesday bucket, is three corresponding to the desired quantity. In compli-

ance with Lines 15 to 17 in Listing 1, a candidate for Tuesday with three items is appended

to the still empty candidate list, the already acquired quantity is set to three, and the ac-

cumulated quantity is cut to zero. This new candidate can be seen in diagram II in Figure

3. On the next day, two items leave the stock due to the output. Consequently, the accu-

mulated quantity drops below zero as can be seen in IIIa. To compensate the overbooking,

two items have to be given back. Therefore, the candidate list is processed backwards.

Since there is only one entry holding three items, this candidate will be truncated to one,

cf. diagram IIIb in Figure 3, and the acquired quantity will be reduced accordingly. Pro-

ceeding the same way, a candidate for Thursday with one item and one for Friday covering

the last pending item will be appended to the candidate list. At the end of the planning

horizon, on Friday, the accumulated quantity representing the stock level is still positive

so that the three candidates will be returned as promises.

674

date input promises net

MO 2 -1 1

TU 2 0 0

WE 1 -3 0

TH 3 -2 1

FR 1 0 1

Table 3: Net time series aggregates

With regard to the fact that per date either a candidate is created or existing candidates

are removed, the candidate check features a linear complexity. Besides, one can easily see

that this algorithm performs best in case of sufficient stock, because only one candidate is

created and no updates are required.

2.2.2 Net Time Series Check

As stated above, there is a second approach, the net time series check, leading to the same

promises and showing the same complexity. Since this algorithm was not integrated into

the prototype for technological reasons, only the main idea will be outlined. The starting

point for the net time series check are two time series, aggregating disjoint sets of fact table

entries. One time series adds up the inputs and the other one all confirmed and conducted

promises.

In a next step, bucket by bucket the aggregated promises are matched to the quantities of

the input time series. A bucket from the promise time series consumes primarily items

from the input bucket of the same date. If this corresponding input bucket does not satisfy

the promise bucket, first earlier input buckets and after that later ones will be emptied. The

resulting net time series represents the resources that are available at the time of the ATP

request, cf. Table 3, and gives this algorithm its name. When the net time series is set

up, the new demand acts just like the promise buckets and takes out the requested quantity

from the net time series. Promises are created based on the obtained input buckets, .

Whereas the candidate check has to consider the whole planning horizon independent on

the stock level, the net time series check can under certain conditions reach minimal com-

puting times. If there are no promises or if they all fall into a small number of buckets and

sufficient inventory is available, the algorithm only has to match a few buckets. Under the

premise that they can even be fulfilled out of the preferred input buckets, only a fixed num-

ber of operations, which is determined by the number of promise buckets, is required and

a constant complexity is reached. In such scenarios, the net time series check outperforms

the candidate algorithm.This scenario is unlikely in production though, as it requires all

confirmed promises to fall onto a few condensed dates.

675

2.2.3 Comparison

To sum up, the two presented algorithms deliver optimal promises to the customer and both

vary in performance depending on the characteristics of the dataset. So, from a merely

logical point of view both alternatives are equal. However, taking technological aspects

into account, major differences can be identified.

SELECT SUM(Fact.quantity), MAX(Fact.date_id)

FROM Fact

WHERE Fact.cvc_id = 1

GROUP BY Fact.date_year, Fact.date_month, Fact.date_day

ORDER BY MAX(Fact.date_id)

Listing 2: Candidate check aggregation

The descriptions above start with the initial time series already available. The creation of

these data structures has not been treated so far. In fact, it is the most time consuming

part in the overall ATP check, because the raw data has to be aggregated on-the-fly. To set

up the time series for the candidate check, all inputs and promises of the specific product

are added up grouped by the selected time granularity. The resulting database query for

the granularity level day is shown in Listing 2. The maximum of all dates per bucket is

selected, because depending on the granularity several timestamps belong into one aggre-

gation class. It is necessary to find the latest timestamp of all aggregated records, to make

sure that at this point in time all movements have already been issued.

For the net time series check, the situation is more complicated. Two separated time series

are necessary, which can basically be achieved in two different ways. The first option

would be to add an additional group-by attribute, the object-type respectively, to the query

for the candidate check. The downside of this method lies in the structure of the result

set, which includes the buckets for both time series. Thus, new empty time series are

created and while iterating over the result set the buckets are inserted either into the input

or the promise time series. Furthermore, with an increasing number of group-by attributes

the query execution time increases substantially. Alternatively, the two time series can be

extracted from the database in separate queries by adding another predicate for the object

type. This approach obviously requires two full table scans and thus does not present

a feasible solution, especially when the application has to deal with several millions of

records.

Another disadvantage, which applies to both query variants equally, is the quantity of data

to be transferred from the database to the application layer, as inputs and promises are not

consolidated into one time series. Being aware of the disadvantages of the net time series

check with respect to the database queries, the decision in favor of the candidate check

becomes more transparent.

676

2.3 Concurrency Control

The algorithms listed in Subsection 2.2 focus on the execution of one ATP check in isola-

tion. They do not factor in the difficulties caused by multiple parallel checks referring to

the same product and consequently accessing the same data. The management of concur-

rent processes indeed belongs to the main challenges in parallel environments. Particularly

in an ATP system, data correctness and consistency at any time is an essential requirement

to avoid wrong promises.

To be precise, there is a temporal gap in between reading the current stock levels from

the database and writing a promise in the end based on those results. In the meantime

another process, proceeding from the same inventory, might have calculated a delivery

date and booked resources that are necessary to fulfill the first request. As a consequence,

the same products are promised twice causing an inconsistent state in the database. Such

anomalies are a serious problem in an ATP system. A company might take severe damage

from dealing with the resulting effects including angry customers, contractual penalties,

costs for acquiring substitute products, and so on. In current ATP systems, the common

practice is to serialize the execution of concurrent requests by locks. Our prototype allows

for choosing out of three strategies suitable for different situation. These three approaches

will be elaborated in this section, benchmarking results will be presented in Section 3.

2.3.1 Exclusive Lock

A naive but secure way to preserve consistency constraints is as mentioned above to lock

critical data. In this context, it means to grant to one process exclusive access rights to the

entire set of fact table entries for the desired product. Since always the whole planning

horizon has to be checked, simultaneous checks on different dates are unrealizable. The

first incoming process acquires the lock, queries the database, calculates the delivery dates,

writes the promises back to the database, and finally releases the lock for the next process

to start. Apparently, this locking policy, termed exclusive lock, involves superfluous la-

tencies in case of sufficient stock. If there were several hundreds of incoming requests for

one product per minute, a sequential schedule would lead to response times that exceed

the limit of tolerance.

2.3.2 Optimistic

Whereas the exclusive lock queues incoming requests for the same product, the second so-

lution, an optimistic strategy, enables parallel execution without blocking. Theoretically,

the optimistic mechanism allows for as many parallel requests as cores available and there-

fore scales linearly with hardware resources. For now, it seems as if the gain in scalability

implies a certain staleness of the data. Indeed, without modification of the ATP check,

violations to the consistency may occur.

This modification consists of a consistency check after the original candidate check. A

process has to verify the correctness of its result concerning the new stock level. The term

677

optimistic expresses the nature of this strategy presuming a balanced stock situation. To

avoid a second full table scan, the maximum row id of the fact table identifying the most

recently written record is retrieved from the database in advance. Afterwards, the check is

performed based on the stock level up to this id. It must be mentioned that the row id is a

continuously incrementing counter, which facilitates absolute ordering of fact table entries

by insertion time.

If the candidate check results in a complete or at least in a partial delivery, the promises

are written to the database and a consistency check will be performed. For this purpose, all

fact table entries with an id higher than the initially determined maximum id are retrieved.

The result set contains exactly those inputs and promises that were recorded during the

check. The records are successively included into the time series that comprises the entries

up to the maximum id. In cases of outputs, for instance corrections to planned inputs

or promises, the stock will be checked for overbooking and the invalid quantity will be

saved. If the record is a promise related to the current demand, the system will use its

quantity to compensate the overbooked quantity. So the promise will be either deleted

or reduced. When all records are processed, a new ATP request will be triggered with

the total rebooked quantity. Evidently, this conflict resolution procedure can end up in an

infinite loop. In order to enforce a termination, one could define a maximum recursion

depth and switch to the exclusive lock, once this depth is reached.

To sum up, the optimistic approach dispenses with locks, unless the inventory is close

to exhausting and many parallel requests are competing for the last items. Though, as

long as sufficient capacities are available, the avoidance of locks can be fully leveraged by

providing appropriate hardware resources.

2.3.3 Instant Reservation

The third idea arises from the drawbacks of the two afore mentioned ones. In general

terms, it works similarly to the optimistic strategy without the need for conflict resolution.

The key to this enhancement lies in blocking the desired quantity before the check is

started. So, this approach is called instant reservation. To reserve the requested quantity, a

promise complying with the customer demand is written directly to the database. For the

candidate check, only the fact entries up to this promise are aggregated so that the check

will not be manipulated by its own reservation.

Once the result is computed, it is compared to the initially recorded promise. If they do not

correspond to each other, an adjustment will follow. At this point, it must be mentioned

that this process is totally transparent to the user of the system. The reservation promise

will not be passed on to the user, unless it corresponds to the calculated one. Otherwise,

the updated promises will be delivered.

Reviewing the sequence of steps, one might have noticed that the reservation can cause an

overbooking. But through the comparison in the end, each process clears up self-inflicted

inconsistencies. Concurrent processes include earlier reservations in their calculations.

Accordingly, it is guaranteed that they do not allocate resources needed to fulfill other

earlier processes. Even if the earlier processes have not finished their check yet, the desired

678

quantities are blocked by the reservation.

However, in one specific case, this approach does not produce an optimal utilization of

available resources. Given an empty stock and two incoming requests with the same quan-

tity, the first one writes its reservation and initiates the aggregation excluding the reserva-

tion. Before the second request writes the reservation promise, an input is recorded with

exactly the same quantity like the demands. This input is not seen by the first process so

that the request will be rejected.

Therefore, it would be desirable that the input will be used to satisfy the second process.

This process, however, includes both, the input and the reservation of the first process.

Thus, it also faces an empty stock and refuses the customer request. Being aware of this

problem, one has to decide, whether he will accept it and receive the benefits arising from

the renouncement of locks as wells as conflict resolution. More detailed information about

the performance of all three mechanisms will be provided in Subsection 3.1.

3 Prototypical Implementation and Benchmarking

As mentioned in Section 1, the presented prototypical implementation has been done in

the context of a joint research project between the Hasso Plattner Institute and SAP. The

used database system is based on proprietary SAP DBMS technology and is referred to as

relational, column-oriented, in-memory DBMS in the remainder of this paper.

Our prototype ATP had to tackle the following architectural requirements: Multiple con-

current orders have to be possible and are to be handled without risking inconsistency.

The prototype renounces the limitation of static buckets in current ATP systems, enabling

distinctions in delivery date granularity on a per-demand basis.

The implementation we set out to build was to be optimized for columnar, in-memory stor-

age [Hen10]. In order to provide fast order confirmation, our implementation also exploits

parallel execution potential within the concurrency control strategies. It provides special

views for analytical queries which allowed us to specify key figures upfront, yielding im-

proved performance in analytical queries, particularly those important to create the time

series for a candidate check. The application logic is implemented in Python, accessing

the database with via its SQL interface. Computationally intensive parts have been ported

to C++ and are imported as compiled modules.

3.1 Benchmarks

The benchmarks were conducted on a 24 core Xeon (four physical cores each comprising

six logical cores) with 256 GB of main memory. This server was used for both, applica-

tion and database, eliminating network performance as a factor in accessing the database.

Furthermore, in our benchmarks we disabled logging of transactions to prevent hard disk

transfer speed from posing as a bottleneck in our scenarios.

679

Our benchmarks were conducted on a dataset that was derived from a live ATP system of a

Fortune 500 company. Today’s ATP systems do not support analytics on top of ATP checks

and only keep a short horizon of data as an active dataset and discard data after a few days.

Thus, we generated a dataset spanning 3 years from a set of records covering 3 months of

planning horizon. We ran our benchmarks on datasets ranging from 1 to 64 million active

transaction items, where every order has 5 to 15 line items. Other dimensions were not

scaled with the number of transactions, simulating different company sizes.

The immediate goal of our benchmarks is to show the feasibility of our prototype and

proposed data structures. The exclusive strategy provides a comparison with existing sys-

tems from an algorithmic standpoint - it reflects how checks in modern ATP systems are

conducted with the only difference being the data storage.

3.1.1 Dataset Size

The first benchmark serves as a proof of concept of the database architecture applied in

our system. On a varying dataset size, the same operations are performed. In each run, 10

concurrent processes execute 400 checks. The critical part concerning the overall runtime

of an ATP check is the aggregation query. The time spent in the application or to be exact

the candidate check is supposed not to be affected by the dataset presuming a constant dis-

tribution of fact entries over the time. In this case, the size of the time series is determined

only by the chosen granularity, which will not be changed so that the application part is

constant.

 0

 10

 20

 30

 40

 50

1m 4m 16m 64m

ch
ec

k
s/

s

fact table rows

Instant Reservation
Optimistic

Exclusive Lock

Figure 4: Varying dataset size

To conclude, the expected outcome of this benchmark is a linear relation between the

dataset size and the query execution performance. Figure 4 displaying the throughput of

checks explicitly reflects this trend. For the remaining experiments in this paper we work

on 64 million records item which represents three years of operations in a large company.

680

3.1.2 Concurrency Control - Single Check

The following experiments directly compare the three concurrency control mechanisms

introduced in Subsection 2.3. For this purpose, at first a single check is executed in iso-

lation to evaluate the overhead added by the concurrency control. To recap, the exclusive

lock only wraps the candidate check with the acquiring and releasing of a lock on product

level. Both are atomic operations and do not involve database access. So, the overhead is

supposed to be negligible.

In contrast, the optimistic approach requires a consistency check, which might induce a

loop of conflict resolutions, with a maximum recursion depth though. The instant reserva-

tion mechanism neither uses locking nor consistency checks. Instead, it writes the promise

first and has to validate it in the end. In case of a mismatch with the calculated delivery

confirmation, an additional write operation to correct the promise is triggered. In Figure

5, the elapsed time split into read, write, and computation is illustrated. As expected, the

optimistic check performs worst in this experiment, because it has to retrieve the recent

fact entries to control the stock level after booking.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Exclusive Lock Instant Reservation Optimistic

ti
m

e
in

 s

database read database write application

Figure 5: Single check

Since the inventory has not changed during the check and enough items were available, a

conflict resolution has not happened. Neither a promise adjustment in the instant reserva-

tion run was necessary. Hence, the overhead is minimal for the two strategies that dispense

with locking. The process of the exclusive lock is independent on the scenario and does not

prolong the check anyway. Nevertheless, the scenario was not constructed to show the best

case performance of the any strategy but rather to emulate the most common conditions

with sufficient stock.

3.1.3 Concurrency Control - Throughput

After comparing single check times, the effectiveness of the presented techniques when

facing parallel requests is measured, as it is the primary reason for putting so much em-

phasize on this topic. The prevailing KPI to assess concurrency control strategies is the

throughput, in our case the number of accomplished checks per second. The setup for

681

this experiment consists of 1000 checks to be executed on the machine specified above

by a varying number of processes representing the degree of parallelization. In the first

experiment, the checks refer to different products.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32 64 128 256

ch
ec

k
/s

Processes

Exclusive Lock
Instant Reservation

Optimistic

Figure 6: Disjoint CVC access

On the basis of the single check times and the hardware capacities, conclusions about the

throughput can easily be drawn. The exclusive lock allows parallel requests on differ-

ent products, so do the optimistic and the instant reservation approaches. Logically, the

throughput scales linearly with an increasing number of processes. Since there is only a

limited number of physical and logical cores, the increase of the curves flattens when the

hardware is fully exploited, as can be seen in Figure 6.

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 128 256

ch
ec

k
/s

Processes

Exclusive Lock
Instant Reservation

Optimistic

Figure 7: Single CVC access

For concurrent checks on one single product, another behavior is to assume. No matter

how many processes are used to carry out the 1000 checks, only one process at a time can

operate on the requested product in case of the exclusive lock. The logical consequence

would be a constant throughput, which could be verified experimentally in our measure-

ments, cf. Figure 7. This benchmark further gives evidence for the scalability of the two

other alternatives in case of concurrent checks on one product. Those scenarios heav-

ily benefit from locking-free concurrency control, whereas the exclusive lock enforces a

sequential execution.

682

3.1.4 Write-Intensive Operations

Column-stores are particularly tailored for analytical queries. The workload of an ATP

application is not limited to availability checks only but includes regular write operations

as well. New orders and delivery promises have to be saved with every order. All new

inputs and changes in inventory and production result in update and insert operations. The

prevailing solution to handle a mixed workload consists of the division of the database

into two parts, a read-optimized and a write-optimized store, the delta store, as briefly

touched on in Section 1. The read-optimized store contains a snapshot of the database at

a pre-established point in time. All incoming modifications are written to the delta store

[KHK80]. The idea of organizing the data in two isolated stores dates back to the sixties.

Early studies propose to regularly consolidate all modifications in the write-optimized

store into the read-optimized store [SL76]. This so called merge process is the only proce-

dure that modifies the read-optimized store. Since there is no need for maintainability or

updatability, it can store the data most suitable for fast read access.

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200

e
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

time in s

insert

merge

check time

Figure 8: Performance during merge

In the delta-store, fast inserts can be enabled by not using the compression and keeping

the data unsorted. The obvious effect is that ATP queries slow down, when the delta store

reaches a certain size, since both stores need to be considered. In the light of this perfor-

mance loss, a naive suggestion would be an eager merge policy minimizing the response

times of analytical queries. However, the merge process itself is a complex procedure

consuming a considerable amount of system resources. So, merge scheduling strategies

have to deal with the tradeoff between merging often to keep the write-optimized store

small and merging rarely to reduce the influence of the merge on the regular operation. To

get an impression on how the merge process affects the ATP query execution, a long-term

benchmark has been run on a dataset of 64M records. One process continuously executes

ATP checks and another one inserts in cycles 1000 fact entries that are merged instantly to

the read-optimized store. The curve in Figure 8 shows the total time spent on one check

683

while the second process is in insert, merge, and idle phases and highlights the importance

of a smart merge policy.

4 Business Implications

After describing the involved concepts and their prototypical implementation, this section

lists possible business implications that could be realized by running the ATP application

in a productive environment.

Parallel ATP Checks on Hot Products. Performing ATP checks on aggregates necessi-

tates exclusive locking. As demonstrated in the previous section, we can omit exclu-

sive locks in our prototype. This increases the throughput of simultaneous checks

on the same product by using multi-core technology. The limit of performing simul-

taneous checks on single products is a problem, e.g. for high-tech companies when

introducing new, highly requested products.

Changing the Temporal Granularity for Every Check. Since for every check the cor-

responding time stamp is saved, it is possible to change the temporal granularity for

every single check. Thus, a check on hours or on weeks can be done in the same

system without any modifications. This is not possible with aggregates as they can

only operate on one initially defined temporal granularity.

Considering Product Attributes in the Check. The inclusion of additional attributes dur-

ing the check is supported by the columnar data structure and has a significant busi-

ness impact. Now, companies are able to include fine-granular product attributes in

their checks for otherwise identical products. Examples are the date of expiry in the

food industry or the quality of raw materials e.g. in the steel industry.

Analytics on Check History. The ability to do analytics on the history of ATP checks

introduces two major advantages: on the one hand, a company can perform classical

analytical tasks such as seeing which products were sold the most, which customer

groups ordered which kinds of products in which time periods and so on. On the

other hand, storing the complete history of ATP checks also including those checks

which did not result in actual orders, makes an important source of information

accessible: companies can see which products were highly requested, but were not

ordered e.g. because not enough quantities were available. Furthermore, a company

can see which are the most popular replacement products, e.g. which products were

ordered in the end, although different products were initially included in the ATP

check.

Instant Order Rescheduling. Promised orders and planned deliveries are based on a cer-

tain schedule of incoming products or planned production. However, often these

schedules and plans turn out to be incorrect as products may not arrive on time or

production goals cannot be met. As a consequence, already promised orders have

to be rescheduled. Using aggregates, this is a time-intensive process as the relevant

684

aggregates have to be calculated back to the point where the order in question was

promised, so that the new delivery date can be calculated considering the changed

stock projections. This operation can now be done significantly faster as all the

relevant fine granular data is on hand. Including additional attributes such as prior-

itization of customers implies further functionality: A major customer’s order that

precedes other orders in its relevance can be protected from rescheduling activities

incurred by unexpected changes to a product’s stock level.

5 Conclusion

The real-time ATP approach presented in this paper does not only tackle performance

bottlenecks, but also enables innovative features. On the technical side, we introduced

the candidate checking algorithm and identified the instant reservation strategy as suitable

concurrency control mechanism for executing an ATP check on an in-memory column-

store. Based on a dataset with 64 million transactional records, we achieved a check time

of 0.6 seconds. The dataset is based on the anonymized data from a Fortune 500 consumer

products company and spans three years of operation. Our approach scales linearly with

added CPU cores, even in hot-spot situations with checks against the same product. On the

business side, we described possible business implications of our approach. To our knowl-

edge, many ATP related systems do not track availability checks which did not result in

orders and thereby lose extremely valuable information for planning purposes. Further-

more, rescheduling of orders is a time-intensive, static process without the possibility to

include further requirements. Only these two aspects alone provide a significant benefit

for companies.

The outlook of this paper leaves the safe harbor of well-established database concepts,

prototypical implementations, and measurable results, but draws a vision of how com-

panies could leverage analytical capabilities in the context of an ATP check in order to

maximize their profits. On the one hand, let us assume that we can analyze the full history

of a customer’s ATP checks and resulting orders during every new incoming check. That

implicates that we can calculate the probability of a customer still placing his order even if

he cannot get the products delivered on his initially requested date. Therefore, we can de-

rive a certain flexibility on the companies’ side when to produce and ship an order without

actually loosing any orders. On the other hand, we heavily discussed the consideration of

additional attributes during the check throughout the paper. Another example for such an

attribute could be the varying production costs for the different products over time. Even

if companies sell products for the same price over a certain period of time, the real pro-

duction costs vary heavily due to changing raw material costs, different availability and

costs of labor, and changing component suppliers. Putting those pieces together, instead

of just considering the available quantities during the check, a company could also include

varying production costs and therefore present an availability date that aims at maximizing

the profits.

685

References

[AMH08] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. ColumnStores vs. RowStores:
How Different Are They Really? Proceedings of the 2008 ACM SIGMOD international
conference on Management of data - SIGMOD ’08, page 967, 2008.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database Architecture Opti-
mized for the New Bottleneck: Memory Access. Very Large Data Bases, 1999.

[CGK01] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query Optimization In Compressed
Database Systems. International Conference on Management of Data, 30(2), 2001.

[Dic05] Jörg Thomas Dickersbach. Supply Chain Management with APO. Springer,
Berlin,Heidelberg, 2005.

[GS91] Goetz Graefe and Leonard D. Shapiro. Data Compression and Database Performance.
pages 22–27, 1991.

[Hen10] Doug Henschen. SAP Announces In-Memory Analysis Technology, 2010.

[HLAM06] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and Samuel Madden. Performance
Tradeoffs in Read-Optimized Databases. Very Large Data Bases, 2006.

[KGT+09] Jens Krüger, Martin Grund, Christian Tinnefeld, Jan Schaffner, Stephan Müller, and
Alexander Zeier. Enterprise Data Management in Mixed Workload Environments. 2009
16th International Conference on Industrial Engineering and Engineering Manage-
ment, pages 726–730, October 2009.

[KHK80] V. J. Kollias, M. Hatzopoulos, and J. G. Kollias. Database maintenance efficiency using
differential files. Information Systems, 5(4):319–321, 1980.

[KTG+10] Jens Krüger, Christian Tinnefeld, Martin Grund, Alexander Zeier, and Hasso Plattner.
A case for online mixed workload processing. In Shivnath Babu and G. N. Paulley,
editors, DBTest. ACM, 2010.

[Mar04] Tim Martyn. Reconsidering Multi-Dimensional schemas. ACM SIGMOD Record,
33(1):83, March 2004.

[Pla09] Hasso Plattner. A Common Database Approach for OLTP and OLAP Using an In-
Memory Column Database. Read, 2009.

[Sc05] Michael Stonebraker and Ugur Çetintemel. ”One Size Fits All”: An Idea Whose Time
Has Come and Gone (Abstract). In ICDE, pages 2–11. IEEE Computer Society, 2005.

[SL76] Dennis G. Severance and Guy M. Lohman. Differential files:their application to the
maintenance of large databases. ACM Transactions on Database Systems (TODS),
1(3):256–267, 1976.

[SZ03] Rainer Scheckenbach and Alexander Zeier. Collaborative SCM in Branchen. Galileo
Press GmbH, Bonn, 2003.

686

	Vorwort
	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration vonDatenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex EventProcessing Systems
	Fast and Easy Delivery of Data Mining Insights toReporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-TenantApplications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery throughEnriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Toolfor Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

