B. Konig-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2023 367

Duplicate Table Detection with Xash

Maximilian Koch! Mahdi Esmailoghli,2 Séren Auers Ziawasch Abedjan4

Abstract: Data lakes are typically lightly curated and as such prone to data quality problems and
inconsistencies. In particular, duplicate tables are common in most repositories. The goal of duplicate
table detection is to identify those tables that display the same data. Comparing tables is generally
quite expensive as the order of rows and columns might differ for otherwise identical tables. In this
paper, we explore the application of Xash, a hash function previously proposed for the discovery of
multi-column join candidates, for the use case of duplicate table detection. With Xash, it is possible to
generate a so-called super key, which serves like a bloom filter and instantly identifies the existence of
particular cell values. We show that using Xash it is possible to speed up the duplicate table detection
process significantly. In comparison to SimHash and other competing hash functions, Xash results in
fewer false positive candidates.

Keywords: data discovery; data lakes; duplicate table detection

1 Introduction

The accelerating decentralized creation and publishing of data as well as the need for
integration of such sources has led to a new wave of research on data market places [FSF20]
and data lakes [Ar20]. Yet, these centralized data repositories have to deal with the
distributed nature of data acquisition and the resulting data quality problems, one of
which is duplicate data artifacts. An example of this is the Open Research Knowledge
Graph (ORKG) project [Au20; Jal9]. On the ORKG platform, users can categorize and
describe contributions from research papers and create additional properties to make them
comparable and searchable in a structured form. Out of 524 tabular comparisons in the
ORKG dataset, 48 are duplicates (9%). Figure 1 shows an example of two manually created
comparison tables from the ORKG sharing duplicate rows [Te22]. As shown in Figure 1,
two generated tables on a specific political science topic contain identical content derived
from different literature. The discovery of such identical artifacts is useful. However, the
attribute labels are rather misleading and the order of rows and columns is different. In
a different real-world dataset, the DWTC corpus, containing 174M tables, there are 49M
duplicates (28%) [Eb15a; Eb15b].

! Leibniz Universitit Hannover, Germany koch@dbs.uni-hannover.de

2 Leibniz Universitit Hannover, L3S, Germany esmailoghli @dbs.uni-hannover.de

3 TIB, Germany auer@tib.eu

4 Leibniz Universitit Hannover, L3S, Germany abedjan @dbs.uni-hannover.de

5 Screenshots taken from https://orkg.org/comparison/R110188/ and https://orkg.org/comparison/
R110245/

©©®O® doi:10.18420/BTW2023-18


mailto:koch@dbs.uni-hannover.de
mailto:esmailoghli@dbs.uni-hannover.de
mailto:auer@tib.eu
mailto:abedjan@dbs.uni-hannover.de
https://orkg.org/comparison/R110188/
https://orkg.org/comparison/R110245/
https://orkg.org/comparison/R110245/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-18

368 Maximilian Koch, Mahdi Esmailoghli, S6ren Auer, Ziawasch Abedjan

FROM OTTOMAN TO X Participating in the design: o4l Constitution Making and
REPUBLIC CENTER-PERIPHERY constitution-making in South Democratization in Kenya
ANALYSIS IN TURKISH Africa (2000-2005)

Properties

POLITICAL CULTURE AND 1996 - Contribution 1 2007 - Contribution 1
BUREAUCRACY

2013 - Contribution 1

has research problem Constitution-Making Process Constitution-Making Process Constitution-Making Process
has method Unanimity Principle Qualified Majority Qualified Majority
institution Constitutional Reconciliation Constitutional Assembly National Assembly
Commission (In National
Assembly)
results Failure Successful Successful
country Turkey South Africa Kenya

A FAILED PROCESS OF

Properties Participating in the design: Constitution Making and
constitution-making in South Democratization in Kenya MAKING A NEW
Africa (2000-2005) CONSTITUTION:AN
1996 - Contribution 1 2007 - Contribution 1 EVALUATION ON THE
CONSTITUTIONAL
RECONCILIATICN
COMMISSION
2016 - Contribution 1
has research problem Constitution-Making Process Constitution-Making Process Constitution-Making Pr
has method Qualified Majority Qualified Majority Unanimity Principle
institution Constitutional Assembly National Assembly Constitutional Reconciliation
Commission (In National
Assembly)
Successful Successful Failure
country South Africa Kenya Turkey

Fig. 1: Duplicate table example in the Open Research Knowledge Graph.5

Duplicate detection has been the focus of research for several decades. Most existing
work focuses on record linkage, i.e., finding records that represent the same real-world
entity [Ch12a; Ch12b; Li20; LSR21; Th20]. Another line of research has dealt with the
identification of (near-)duplicate documents [CGS03; Jo72]. In general, the fundamental
challenges in duplicate detection are that pairwise comparisons of all considered entities are
computationally expensive, i.e., O (n?) for n entities, and that effective similarity metrics are
necessary to capture non-exact matches. To reduce the number of table-to-table comparisons
one has to resort to pre-filtering techniques that apriori discard non-matching pairs.

In this paper, we focus on the discovery of duplicate tables within a data lake. We consider
two modes of duplicate table detection:



Duplicate Table Discovery with Xash 369

1. Duplicate table retrieval: Given a user table, the goal is to identify the existence of
all tables that match or contain the given table.

2. Lake de-duplication: Given a repository of relational tables, the goal is to identify all
duplicate tables within a lake.

We consider two tables 77 and 75 to be duplicates if a permutation of columns in 7 exists Tlp
so that Tl” and 75 contain the same set of tuples. While this definition simplifies the problem
of duplicate table detection by excluding fuzzy matches, there are still runtime bottlenecks.
In table retrieval, the initial identification of candidate tables requires the retrieval of tables
with matching rows. In lake de-duplication, we require a blocking technique similar to what
has been proposed in the duplicate detection literature [Ch12a; Fil5; Ga22]. After which
again table-to-table matches have to be considered. As we exclude fuzzy matches, blocking
can be as simple as grouping tables based on the number of rows and columns and then
hashing them via Simhash into smaller buckets.

The overarching challenge in both detection modes is that in order to verify the match of
two tables one has to compare the entire content of both tables after aligning the columns,
which is a computationally expensive process when carried out in a naive manner. A naive
approach to compare two such tables is to first sort the values inside each row alphabetically
(horizontally) and then hash the rows into matching buckets. Note that sorting based on
column labels might be misleading as duplicate tables might differ in the actual column
labels. To circumvent this, the column position is stored for each unsorted row. For m
columns and k rows, this results in O(2 - m - log(m) - k + 3 - k), i.e., sortation of m values
of all k rows and the application of a collision-free hash function to match the sorted
rows into k different buckets. A final pass is necessary to verify that the original column
order is consistent in all matched rows. For large number of tables, this approach will be
prohibitively expensive. Furthermore, in a retrieval scenario, where tables are retrieved via
an inverted index, one has to first retrieve a set of candidate tables that partially match on a
chosen query column.

In this work, we propose hash-based solutions for fast comparison of duplicate candidates as
well as fast discovery of candidates from a large data lake. Our proposed solution is inspired
by a previously introduced hash function framework MATE [EQA22], which was designed
for efficient discovery of multi-column join candidates. MATE leverages a hash function
XasH to mask the existence of each row value of a row within a unified bit string and
applies a bloom-filter-inspired approach with a so-called super key to discard non-joinable
candidates. Doing so speeds up the identification of joinable tables by orders of magnitude.

Inspired by the capabilities of XAsH, we explored its application for the table de-duplication
case, which in a sense translates to joining two tables on all attributes of both tables. When
searching for duplicates, the bloom-filter-like structure can be used to rule out non-duplicate
rows without the need of reordering the columns and knowing the schema of the tables.



370 Maximilian Koch, Mahdi Esmailoghli, Séren Auer, Ziawasch Abedjan

If the hash values of two rows are not equal, the rows are not equal and do not need to be
checked in more detail. Otherwise, it could be evidence of a duplicate table relationship.

In this paper, we explore the application of XAsH and other similar hash functions for the
two detection modes described above: lake de-duplication and duplicate table retrieval. We
describe the workflow of each detection process and possible optimizations when dealing
with tables. We compare the pruning power to other hash functions and discuss situations
where the application of the filtering with X asH is beneficial over direct comparisons.

2 Related Work

Duplicate table detection is related to several lines of research, such as duplicate web page
detection, entity resolution, fuzzy joins, and data discovery.

2.1 Duplicate document detection

Duplicate document detection has been vastly studied to enhance the effectiveness of search
engines and diversify search results by finding duplicate web pages and dropping these
results from the search output [CGS03; He06]. Web pages are mainly comprised of HTML
content and are treated as text documents instead of structured data such as tables. Because
of this, the tables in web pages are also treated as pure text [CCBO02]. These duplicate
detection approaches apply feature generation techniques, such as shingling [Br97], sentence
extraction [Kul7], and stop word removal, and tokenization [TSP08].

These techniques do not consider the highly structured nature of relational tables with
numerical and distinct columns [Br97; TSPOS]. Generally, any approach based on the
approximation of table content through stop word removal and tokenization can serve the
table grouping step and is orthogonal to our proposed techniques. Once a group of candidate
tables is retrieved, the filtering with the super key can take place.

2.2 Entity resolution

In entity resolution, the goal is to discover data records that represent the same entity in
the real world [Ch12b; Ch21; KTR10; Si22]. Entity resolution methods leverage matching
functions that employ similarity metrics to create clusters of table rows that are candidates
to be duplicates [Si22]. To reduce the number of pairwise comparisons, entity resolution
typically applies blocking methods for fast discovery and exclusion of non-matching
pairs [Ch12a; Fil5].

The main difference between entity resolution and duplicate table detection is that the former
only focuses on the similarity of the rows [KPN20]. For two tables to be duplicates, all rows



Duplicate Table Discovery with Xash 371

of the two tables should find a pendant duplicate. Furthermore, the schema should be very
similar. Entity resolution, cannot directly apply to table-level discovery. It is challenging to
systematically decide on two tables being duplicates based on the similarity score of their
rows. Therefore, we focus on the case of exact table duplicates where only reordering of
rows and columns is allowed, which is already hard enough for a large set of tables.

2.3 Fuzzy Joins

Fuzzy joins, i.e., non-equi or similarity joins, aim to discover the joinable rows from
different tables, where the rows have similar keys [WLF11; Yul6]. Xiao et al. aim to
discover near-duplicate tables using join discovery, i.e., set similarity search [Xil1]. They
leverage the positioning filter to efficiently prune the search space and discover joinable
tables for a given table and a join column. However, they only consider single-attribute joins.
Thus, joinable tables are not necessarily duplicates. Because the similarity join discovery
algorithms only discover the similarity based on one key column per table, these approaches
can only serve at the initial candidate retrieval stage.

2.4 Data Discovery

Other data discovery approaches, such as union discovery [Nal8] algorithms, also focus on
partial similarities. For instance, two tables with a very high unionability score might not
even have a single overlapping value, which means that they are not duplicates while they
might be unionable.

3 Fundamentals

The core component of our table duplication approach is the so-called super key, which is a
bit string aggregated from multiple applications of the hash function Xasu developed for
multi-attribute join table discovery [EQA?22]. In this section, we briefly review important
characteristics of XAsH to motivate its suitability for duplicate table detection and describe
the inverted index structure that maintains the generated super keys.

3.1 XasH Design Goals

The design goal for XasH was to hash each row of a table in a way that within a constant
operation it is possible to identify whether the row contains a specific value combination
or not. Thus, it has the core properties of a bloom filter as it does not lead to any false
negatives and is highly effective in differentiating non-equal but similar rows, regardless of
the column order.



372 Maximilian Koch, Mahdi Esmailoghli, Séren Auer, Ziawasch Abedjan

Furthermore, XAsH is designed in a way that the hash of any set of values is masked by the
hash of any of its potential supersets. That is why it can serve for arbitrary multi-attribute
join keys.

To differentiate row values that are non-identical, XAsH captures differentiating features of
each value. For each row value, XasH encodes the least frequently occurring characters, the
location of these characters, and the length of the value. To further differentiate non-identical
rows that by accident end up with the same set of rare characters being encoded. Given a
value of length /, XAsH shifts the resulting code / bits to the left. Thus for two values to
have the same hash, length, rare character distribution and positions must match.

Given a hash string of n bits, XasH divides the bit string into several segments, one segment
per eligible character and a remaining segment to encode the length. Typically the hash
size must be chosen in a way that each eligible character (space, 0-9, lower-case a-z) can
be covered by at least a 1-bit segment. In practice, with a hash size of 128 and larger,
the segments can be larger, which makes it possible to encode the relative location of the
occurrence of the encoded characters within the corresponding segment.

The remaining bits that equal to the remainder of the division of hash size and a number of
eligible characters are used to encode the length of each encoded row value. The encoding
of the length calculates the string length modulo the number of available bits for the length
segment. Thus only one bit needs to be set to encode the length.

3.2 XasH-Aggregation per row

After generating the XasH for each value of a row, all hash results are aggregated via a
bitwise OR operation. The result of this aggregation is a so-called super key.

The super key is generated while indexing the corpus and can now be probed like a
bloom-filter to check whether a value combination is included or not. Given the aggregated
hash value /. of a candidate value combination C and the super key 4, of a row r , the
operation A, V h, should result in £, if there is a chance that the candidate value combination
is contained. Similar to a bloom-filter, i, V h, # h, will always correctly identify that the
C is not contained in r, however, might be inaccurate if i, V h, = h,. In the latter case,
additional verification is necessary. Experiments and proofs in prior work show that XAsu
leads to significantly fewer false positives than the state-of-the-art [EQA22].

Example. To illustrate the hash generation using XasH, we use the following example
from the World Bank’s current GDP dataset [Wo22] as shown in Table 1.

Figure 2 visualizes the process of XAsH generation and the merge into the super key. The
hash size is 128 bits. To select the least frequent characters, each row value is converted
to lower case and only the characters a-z, 0-9, and space are kept. For each row value, the



Duplicate Table Discovery with Xash 373

Tab. 1: Example data: entry from the World Bank’s current GDP dataset.

Country
Country Name Code 2020
Europe & Central Asia (excluding high income) ‘ ECA ‘ 3222403620453.33

three least frequent characters are selected (marked bold): europe central asia excluding
high income); eca; 322240362045333.

In the hash value, there are three bits available per character. If the average location of one
of the least frequent characters is in the first third of the row value, the first bit will be set to
1, the second bit if it is in the second third, and the third bit if it is in the third third. For
example, p in “europe central asia excluding high income” appears in the first third of the
entire value. Thus, the first bit of the p-segment is set to 1.

With 128 bits and 37 eligible characters, 128 — 37 * 3 = 17 bits remain for the length
segment. To encode the length of the first row value, 41mod17 = 7 (41 is the length of the
row value, 17 the segment length) is calculated, which means that the seventh bit in the
length segment will be set to 1.

Lastly, all set bits are shifted left by 41 while the overflow is added from the right, ignoring
the length segment.

Country Name Country Code 2020

Europe & Central Asia ECA 3222403620453.33
(excluding high income)

Length Segment o ‘m o
A

G 7 7o e =TT WA w
0 1 0 0 1 0 0 0 1 1.0 0
1 7 17 L —— L ;- WA L I [ S [T
0 1 0 0o 0 1 10 o0 0 1 0
5
% 1 3] 17
£ 0 1 0
ﬁ 1 15 17
0 1 0
N 1 3 7 15 28 29 30 37 38 39 103 104 105 128
Super kY| o 1.1 .1 .. 0 0/1 .. 10 0 ... 01 0

Fig. 2: Example of XaAsH super key generation



374 Maximilian Koch, Mahdi Esmailoghli, Séren Auer, Ziawasch Abedjan

3.3 XasH for duplicate detection

While the probing operation of XasH for join discovery probes for containment, its
application for duplicate row detection can be more strict as the containment has to go both
ways. Thus, for two rows to be duplicates both hash values have to be exactly the same.

For two tables to be duplicates of each other there has to be a permutation of columns, so
that all tuples of one table are contained in the other and vice versa. For practical reasons
we relax this duplicate definition as follows:

. We ignore the duplication of rows within a single table and consider two tables to be
duplicates as long as each unique row exists in both tables.

. In our implementation, we also enable the discovery of tables that fully contain the
rows of another table, meaning that one table has more rows than the other. Note, that
the number of columns has to be equal. As we will see in Section 4, this decision
does not affect the way XasH is applied for filtering.

3.4 Inverted Index

To achieve fast query results when interacting with the lake, data discovery systems usually
leverage one form of an inverted index [Ab16; EQA22; Fel8; Zh19]. An inverted index is
well-known in the context of information retrieval and maps tokens to containers, such as
documents or tables [GF98]. In the context of data lakes, the containers are the corresponding
tables, rows, and columns. As we rely on the MATE framework, we use their inverted
index, where an entry inside the index consists of the mapping of the tokenized value to the
corresponding table, row, and column IDs [Ab16; EQA22].

In the example shown in Figure 1, the row values ’Turkey’, ’South Africa’, and *Kenya’
appear in both tables whom for simplicity we assign the ids 1 and 2. With that the content
of the inverted index would be as follows:

Turkey — {1,2}
South Africa — {1,2}
Kenya — {1,2}

The schema of the index includes one row of one table from Figure 1 and the super key
column is shown in Table 2.

In addition to the aforementioned mapping, the MaTE framework also maps the super key
to each row value so that information about each row is readily available when probing for
one of the row values [EQA22]. Additionally, an index is created on the super key column,
to be able to retrieve results from the table when using the super key as a filtering criteria.



Duplicate Table Discovery with Xash 375

Tab. 2: Schema of the inverted index in the database

tokenized tableid colid rowid super_key
Turkey 1 0 0
South Africa 1 1 0
Kenya 1 2 0

Algorithm 1: Duplicate table retrieval

1 Inputs: user_table

2 duplicate_tables =[]

3 super_key_mapping = csvToSuperKeyRowldMap(user_table) /* Map super key to row ids */

4 input_rows = super_key_mapping.values()

5 input_superkeys = super_key_mapping.keys()

6 rows = getDbRowsWithSameSuperKey(input_superkeys) /* Get all rows from the database, that have one of
the super keys from the input rows */

7 foreach row in rows do

8

16

input_rows_candidates = super_key_mapping.get(row.superkey) /* Get all rows from the input table, that
have the same super key as the current db row using hash join */
foreach input_candidate in input_rows_candidates do
/* check the correspondence of rows, yet make sure that column positions remain consistent across
matched rows */
if verifyRows(input_candidate, row) then
table_id_to_rows.add(retrieveTableId(row), retrieveRowId(row));
table_id_to_rows_input.add(retrieveTableld(row), retrievelnputld(row));
foreach (rableid,rowids) in table_id_to_rows do
/* It is checked if there are duplicate tables, based on the detected duplicate rows for each db table */
duplicate_tables.add(getDuplicateTables(tableid, rowids, table_id_to_rows_input[tableid],
table_id_to_rows|[tableid]));
return duplicate_tables;

4 Duplicate Table Detection

In this section, we describe how a hash-based index can be used for duplicate table retrieval
as an online process for a given user table and as an offline process to de-duplicate a group
(a block) of tables. For both applications, we present algorithms that leverage the super keys
based on XAsH.

4.1 Duplicate Table Retrieval

In the first scenario, the user provides a table and is searching for all possible duplicates or
subsuming tables inside the data lake at hand.

Given an inverted index as suggested in Section 3, the naive approach would use the content
of one column to fetch all tables that contain all values of that particular column. Then all
remaining columns of the fetched tables would be loaded so that the remaining columns of
the input table can be verified against each candidate table.



376 Maximilian Koch, Mahdi Esmailoghli, Séren Auer, Ziawasch Abedjan

To reduce the runtime of this step and the number of string comparisons, one can leverage
XasH as a filter. This requires us to hash all rows of the input table using XAsH and to
retrieve the super keys of lake tables that were generated during the indexing phase.

Algorithm 1 depicts the process in more detail. Given the user table, the algorithm first
iterates through its rows to calculate the super key for each row and keeps them accessible
for later probing.

After processing the input table, the approach retrieves candidate rows from the lake. Using
the inverted index, a query is submitted to the data lake where to retrieve any row with a
super key that appears in the input table (line 6). Each retrieved row from the data lake is
compared with all rows from the input table having the same super key (line 11). This step
verifies for two rows with the same super key whether they indeed contain the same row
values, regardless of the order.

If an input row and a row from the lake match, the table ID and the row ID of the data lake table
as well as the row ID of the input table are temporarily stored in rable_id_to_rows(line 12)
and fable_id_to_rows_input (line 13).

After all of the rows passed the aforementioned checks, all tables that share any row with the
input table are verified (line 15). Using the aforementioned table-to-row maps, tables that
either contain all input table rows or are subsets of the input table are identified ( line 15).
The getDuplicateTables function uses the table_id_to_rows_input map to check which of
the rows of the input table occur in the database table and the table_id_to_rows map, to
check which rows of the database table occur in the input table.

4.2 Lake De-Duplication

Finding duplicate tables in a data lake requires comparing all pairs of tables.

Typically, some sort of blocking has to be applied to reduce the number of pairwise table
comparisons. For the sake of context, Figure 3 shows a conceptual pipeline for Lake
De-Duplication including the blocking step. Generally, the blocking strategies have to be
tailored to the type of duplicates we are after. If only exact duplicates with arbitrary row
and column orders are considered, the blocking can already take the table dimensions into
consideration. If fuzzy duplicates are of interest hashing approaches based on Simhash
for near-duplicate document detection can be considered. In this paper, we consider the
former situation and apply a very simple blocking technique that sorts out tables with equal
dimensions. Our approach is orthogonal to blocking. Rather we show, that given a coherent
group of tables, i.e., all tables that are in the same block or have the same row and column
dimensions and share some general similarity, the existence of the super key significantly
improves the overall pairwise comparisons.



Duplicate Table Discovery with Xash 377

All pairs of tables contained in a block must undergo pairwise comparisons. To this end, we
join each pair of tables using hash join with XasH super keys and pass the joint table to the
validation step. In this step, the joinable rows are validated to discover and drop the false
positive rows, i.e., rows that have the same super keys but are not joinable. Ultimately, the
tables are duplicates if the number of duplicate rows equals to the number of rows in the
smallest table.

Blockb & Sizes
Hash Inner Join

Block 1

) Blocking
g\, e Via Column [ 2
= Dimensionality

: T
Sz =+t

Block n

Yes, Duplicate Detected <«

No, Tables Are Not Duplicate (=]

Fig. 3: Lake de-duplication pipeline.

Algorithm 2 shows the process of comparing two tables in detail. CompareTables receives
two tables as input and returns as the result whether the tables are duplicates, or strictly
contained in one direction. First, the smaller and the bigger tables are identified (Line 3).
This helps us to create the hash table effectively and to find the candidate subset table. In
the first loop, the algorithm (Lines 4-6) creates a hash table based on the super keys in the
bigger table. The hash table is created based on the bigger table because in the filtering
phase using the smaller table, we can also identify a one-directional subset relationship.
Creating the dictionary based on the bigger table allows us to make sure that if even one
super key in the smaller table does not exist in the dictionary, we can make sure that the
two tables at hand are neither duplicates nor subsets of each other (Lines 9, 10). On the
contrary, if a super key from the smaller table exists in the hash table (Line 13), we get the
corresponding candidate rows from the larger table (Line 14) and verify them (Line 15).
The verifyRows compares the actual cell values of rows with the same super key. For this
purpose, it sorts the cell values of each row and checks whether the two rows are equal. To
save runtime, each row is only sorted at most once and the sorted row is cached in case it
is needed for later comparisons. For each matched row the function records the resulting
column alignment. If two consecutive row matches result in different column alignments,
the tables are considered as non-duplicates. If the rows are duplicates, they will be stored in
the matched_rows list (Line 16). If the size of matched_rows equals the size of the smaller
table, it means that the bigger table contains all the rows in the smaller table and there is a
subset relationship (Line 17).

The proposed algorithm and pipeline lead to zero false negatives. Based on the definition
of duplicates in this paper, two duplicate tables must have the same number of columns.



378 Maximilian Koch, Mahdi Esmailoghli, Séren Auer, Ziawasch Abedjan

Algorithm 2: CompareTables

1 Inputs: =¢/: table 1, 2: table 2,

2 matched_rows = []

3 smaller_table, bigger_table = getSmallerBiggerTable(¢/,r2)
4 foreach row_t1 in bigger_table do

5 super_key_t1 = bigger_table[row_t1].get_super_key()

6 hashjoin_map[super_key_t1].append(row_t1)

7 foreach row_t2 in smaller_table do

8 super_key_t2 = smaller_table[row_t2].get_super_key()

9 if super_key_t2 not in hashjoin_map then

10 | break

11 else

12 row_t2_values = smaller_table[row_t2]

13 foreach hit_row_tI in hashjoin_map[super_key_t2] do
14 row_t1_values = bigger_table[hit_row_t1]

15 if verifyRows(row_t1_values, row_t2_values) then
16 |  matched_rows.append(hit_row_t1, row_t2)

17 return ||matched_rows|| == ||smaller_tablel||

As our blocking method groups the tables based on their column dimensionality, i.e., the
number of columns, there will be no misses in during blocking.

The bloom-filter-like property of X AsH assures that any two rows that are duplicates will
have the same super key. Therefore, no duplicate rows will be missed if their super keys do
not match.

5 Experiments
We carried out a series of experiments to answer the following questions: (1) Can we
significantly improve the runtime of duplicate table detection using the X asH filter? (2)

How does modifying the X AsH generation affect the number of false positives? (3) How do
other hash functions perform for the same purpose?

5.1 Experimental Setup

We conduct experiments for both setups: duplicate table discovery and table group de-
duplication.



Duplicate Table Discovery with Xash 379

5.1.1 Dataset for duplicate table discovery

To test the efficiency of our approach, we executed duplicate detection tasks on top of
the DWTC dataset [Eb15a]. The corpus consists of 145,533,822 tables and is indexed as
described in Section 3.

As the algorithm expects a table for input, we randomly selected 5 tables for each row and
column number dimensions of 1, 10, 100 and 5, 10, 50, respectively. In all our experiments,
we also retrieve tables with subset relationships (see Section 4). Turning this check to exact
duplicates does not change the performance.

5.1.2 Dataset for lake de-duplication

To evaluate the effectiveness of the super key filter in a lake de-duplication scenario, we
simulate the generation of groups where table-to-table comparisons have to take place at
the row level. We sampled coherent groups of tables, i.e., with equal table dimensions, from
the Wikipedia dataset® [Au07].

The Wikipedia dataset consists of 7,684,431 different tables, with 380,475,701 total entries
in the inverted index described in Section 3. For the different test runs on this dataset, we
sampled real groups of 1,000-50,000 tables to represent duplicate blocks.

5.1.3 Competitors

For both scenarios, we are interested in the number of false positives and the runtime in
comparison to the naive approach and other hash functions.

. Naive approach: In this approach, duplicate rows are detected by checking if two
rows are equal through sortation and step-wise comparison of the aligned row values.

. XasH: Two rows are compared by checking if the super keys generated using
XasH are equal. The super keys consist of 128 bits, as proposed in the original
paper [EQA22]. If the super keys of two rows are equal, the row values need to be
checked the same way as described for the naive approach, to rule out a false positive.

. SimHash: SimHash was developed for the purpose of finding similar content using
hash values [MJS07]. Its application is similar to using XasH, with the difference
that SimHash was used to generate the super keys.

. CityHash: CityHash was developed to generate hashes quickly, while still resulting in
mostly unique values [PA22]. The application is similar to using XAsH or SimHash.

¢ https://databus.dbpedia.org/dbpedia/text/raw-tables



380 Maximilian Koch, Mahdi Esmailoghli, S6ren Auer, Ziawasch Abedjan

. MDS5: MDS5 was chosen, as it is a broadly used hash function. Its application is similar
to using XasH, SimHash, or CityHash.

All experiments were executed on a server with an AMD EPYC 7702P CPU with 64
cores/128 threads, 528 GB RAM, and 10 TB storage space. All code is implemented in
Python 3.9.2.

We used PostgreSQL 13.7 to store the inverted index. The indexes map tokenized row values
of the dataset tables to the corresponding table, row, and column ids as well as the row super
keys. Further, there is an index on the tableids and a third one on the super keys. All code is
available on GitHub: https://github.com/LUH-DBS/XashDedup.

5.2 Response time in duplicate table discovery

Table 3 displays the results of our main experiments to assess the efficiency of duplicate table
retrieval under the presence of different hash functions for super keys. We report the runtime
average for five tests per input dimension, i.e., (X rows and Y columns). Furthermore, we
report the average percentage of false positives (FP %), which is calculated as % and
measures the ratio of non-duplicate rows that wrongly passed a hash-based filter. In essence,

a good filter has a low FP%.

The approach based on XAsH has the lowest percentage of false positives across all input
table dimensions, except for 10 rows / 50 columns. Note that although for 50 columns the
FP rate is about the same rounded number of 100% for CityHash, SimHash and MDS5 there
are significant differences in the absolute numbers. Using XAsH, on average 148k false
positives passed the filter, while for other hash functions this number was 750k, 580k, and
632k, for CityHash, SimHash, and MD5 respectively. This difference is clearly reflected in
the runtime. XAsH yields the lowest average runtime by at least one order of magnitude,
compared to the filters with the other hash functions. The experiment is repeated 5 times
and the runtime superiority of XasH compared to the other hash functions is statistically
significant within 99% confident interval. For 100 rows and 5 columns, the approach based
on XAsH clearly shows an advantage in terms of false positives and runtime: with only
3.4% of the passed rows being false, the runtime of 688ms is at least 57x faster than the
competitors. For the (1,5) dimension SimHash has a slightly better average runtime despite
the higher FP rate because in some experiments high similarity of rows inside the input
table result in identical hash functions, which in turn reduces the retrieval effort for such
input tables.

We make several further observations with regard to the influence of the input dimensions
on the overall runtime and FP rate. First, the more columns the input table contains the
higher is the overall false positive rate. This is because the hash functions are aggregates of
row value hashes. Thus, the more values are hashed and ORed the higher will be the number
of 1-bits, i.e., bits that turned to 1, and the more likely it will be that by chance the same


https://github.com/LUH-DBS/XashDedup

Duplicate Table Discovery with Xash 381

Tab. 3: Runtime, result size, and false positives (FP) averaged over 5 experiments per input dimension

1 Row / 5 Cols 1 Row / 10 Cols 1 Row / 50 Cols
Average... | Runtime (ms) | FP % | Runtime (ms) | FP % | Runtime (ms) | FP %
XASH 1,023 1.1 320 23 713 74.6
CityHash 34,470 74.6 5,002 | 100.0 21,611 | 100.0
SimHash 963 1.1 19,977 99.9 9,754 | 100.0
MDS5 16,038 50.0 58,353 | 100.0 21,856 | 100.0
No Hash 2,639,586 - 1,787,112 - 1,823,862 -
10 Rows / 5 Cols 10 Rows / 10 Cols 10 Rows / 50 Cols
Average... | Runtime (ms) | FP % | Runtime (ms) | FP % | Runtime (ms) | FP %
XASH 135 23.4 150 0.0 10,440 100
CityHash 41,428 99.8 23,420 | 100.0 36,927 100
SimHash 24,406 100 25,692 | 100.0 37,610 100
MDS5 8,464 98.6 23,238 | 100.0 370,843 78.4
No Hash 403,565 - 2,767,554 - 1,495,390 -
100 Rows / 5 Cols 100 Rows / 10 Cols
Average... | Runtime (ms) | FP % | Runtime (ms) | FP %
XASH 688 34 397 10.5
CityHash 39,707 99.9 79,712 | 100.0
SimHash 445,152 99.5 71,710 | 100.0
MDS5 280,832 | 100.0 80,524 | 100.0
No Hash 2,156,850 - 1,454,387 -

bits are turned to 1. There is an anomaly in the runtime with the (1,5) input datasets for
X asH as the runtime is higher than all other chosen dimensions except (10, 50). The reason
is that there are too many actual duplicates that need to be processed for (1,5). For larger
dimensions, the probability for duplicates and so true positives naturally decreases so that
the number of FPs and the rate becomes more relevant. As expected, the approach with no
hash function filter displays a significantly higher runtime than the hash-based approaches.
We enforced a limit of 1M cells for the number of retrieved rows so that the naive approach
would be able to finish. Small deviations in the number of true positives are a result of a
hard limit of the enforced limit. The runtime might be higher in cases where the limit is
exceeded, i.e., the other hash functions.

5.3 Runtime Lake De-Duplication

As we make no claims on how to obtain the duplicate groups in lake de-duplication,
we only present experiments on the pairwise comparison approach in randomly selected
duplicate groups of 1,000 tables (7,284 rows; 54,434 row values, 96 duplicate tables tuples),
5,000 tables (33,937 rows; 233,807 row values, 2,528 duplicate tables tuples), and 10,000
tables (66,091 rows; 404,999 row values, 10,845 duplicate tables tuples). We repeat each
experiment five times and report the average.



382 Maximilian Koch, Mahdi Esmailoghli, Séren Auer, Ziawasch Abedjan

100%
90%
80%
70%
60%
50%
40%
30%

False positive rate [%]

20%
10%
oy M
1,000 Tables 5,000 Tables 10,000 Tables

W Xash SimHash CityHash MD5

Fig. 4: Avg. false positive rates of table comparisons in duplicate groups

1,000 Tables 5,000 Tables 10,000 Tables

Avg. runtime in ms | Avg. runtime in ms | Avg. runtime in ms

Xash 401 9,229 48,601
SimHash 424 9,935 50,920
CityHash 457 10,417 52,610
MD5 458 10,509 52,738
No Hash 7,669 203,769 716,738

Tab. 4: Runtime of table comparisons in duplicate groups

Figure 4 shows the false positive rate and Table 4 contains the runtime for the different hash
functions and table groups.

Across all tested groups, XAsH has the lowest percentage of false positives with a false
positive rate below 2.5%, followed by SimHash with a minimum of 58% false positives,
CityHash and MD35 with both around 74% false positives at minimum. Accordingly, XAsH
application results in the lowest runtime.

The number of false positives increases with the size of the groups for all approaches.
Similarly, the runtime of each approach increases each time by an order of magnitude when
increasing the group size from 1,000 to 5,000 and then to 10,000.

For 1,000 tables, 2,509,878 row comparisons were performed on average for 5 runs with
the naive comparison algorithm, which leads to a runtime of 7,669ms. Using the MD5 hash
function reduces the number of comparisons to 15,797 similar to CityHash with 15,681.
Despite the drastic reduction of comparisons by a factor of 160, the runtime is only reduced
by a factor of 16, to 458ms for MDS5 and 457ms for CityHash. This is due to the fact, that
while using a super key eliminates some row comparisons, the super keys still need to
be compared with each other using a hash join approach. Furthermore, the overhead of



Duplicate Table Discovery with Xash 383

retrieving tables becomes a more noticeable process. Using X asH, there are on average only
67 false positives out of 1,734 rows, making its approach the fastest. XasH outperforms
SimHash significantly within the 99% confidence interval.

For groups of 5,000 and 10,000 tables, we see a similar relative performance relationship as
observed for the group of 1,000 tables. Using X AsH results in the fastest execution time
of 48,601 ms for 265,067 rows in 10,000 tables, while SimHash, CityHash, and MD5 are
slightly slower. Using SimHash leads to the second-best runtime with 50,920ms, but around
62x more false positives.

Using no hash functions and therefore comparing all rows with each other results in a
runtime of 716,738ms and 270,718,502 row comparisons in the largest group. Using any
hash function the runtime can be reduced by more than 93%, 92% with XasH.

5.3.1 Varying the Hash Size

The hash functions usually require size parameters that specify the number of bits the
returned hash value has. To examine the effect of the hash size, the compareTables algorithm
is executed with different hash sizes of 64, 128, and 256 for XasH and Cityhash. For
SimHash, 64 and 128 bits were used, as there was no implementation for 256 bits available.
The experiment was performed on the 10,000 tables group of the Wikipedia dataset.

Tab. 5: Runtime comparison: different hash sizes

Runtime in ms FP | SUM (FP+TP)
XasH 64 32,051 5,725 70,562
XasH 128 31,537 5,535 70,354
XaAsH 256 31,809 4,455 69,266
SimHash 64 35,813 632,478 697,627
SimHash 128 35,058 277,666 342,792
CityHash 64 38,576 | 1,891,030 1,956,452
CityHash 128 36,653 | 1,021,649 1,087,033
CityHash 256 36,753 654,260 719,393

Table 5 shows that increasing the hash size reduces the number of false positives, thus
leading to a decreased runtime. For X asH, the number of false positives decreases when
using 128 instead of 64 bits, but increases slightly with 256 bits. This is because the FP
rate is already very low with 128 bits and increasing the hash size increases the runtime of
the hash value checks. When using a 128-bit super key, only 5,535 FPs passed the filter
compared to more than 275,000 with SimHash and more than 1,000,000 with CityHash. For
SimHash and CityHash, the effect is more significant. Increasing the bits from 64 to 128
nearly halves the number of false positives for SimHash and CityHash from around 630,000
to fewer than 275,000 for SimHash and from more than 1,900,000 to around 1,000,000 for
CityHash.



384 Maximilian Koch, Mahdi Esmailoghli, S6ren Auer, Ziawasch Abedjan

This experiment shows that a larger hash size generally leads to better pruning. Increasing
the number of bits for the hash value reduces the number of false positives as there are more
bits available to encode the row. However, as seen for X asH, there might be a cap on how
much pruning can be achieved. It is important to note that increasing the size requires more
disk space for storing the hashes. Increasing the hash size for CityHash from 64 bits to 256
bits quadruples the space required for storing the super keys. In particular, the super key
with 64-bit hash space requires 11.3 GB and 0.4 GB for DWTC webtables and Wikipedia,
respectively. This increases to 45.2 GB and 1.5 GB when using 256 bits. For large data
lakes, this increase could mean significant storage space that could be saved by using a
more effective hash function, such as XAsH.

5.3.2 Modifying the XasH Generation

It is possible to modify the generation of X AsH, either by altering the XasH function itself
or by changing the input value based on which the hash value gets generated.

Rotation XasH uses a bit rotation routine to differentiate strings with the same rare
characters but different lengths. With the rotation, it is expected that more unique hashes
will be generated and as such, the number of false positives will be reduced. We test this
assumption by comparing XasH with and without rotation on the different samples of the
DWTC dataset.

Table 6 shows the number of false positives with and without rotation. Generally, the runtime
differences are not statistically significant.

Tab. 6: Number of false positives with/without rotation

With rotation | Without rotation
1,000 Tables 156 164
5,000 Tables 517 515
10,000 Tables | 815 821

As the shifting of the hash values consumes additional resources, the higher resource
consumption makes the use of the rotation unjustifiable with the low number of additional
false positives when removing the rotation.

To further explore the influence of the rotation step, we also compared the FP-rate for different
table sizes. For this purpose, we sampled 383 tables with 20 columns and systematically
removed columns so that the actual duplicate tables remained duplicates with just fewer
columns. This experiment as well showed that turning off the rotation showed only a minor
improvement in the filtering ability.



Duplicate Table Discovery with Xash 385

Input String  So far, the super key for each row is generated using X AsH by generating the
hash value for each row value and then logically OR’ing all hash values of the row values.

A different approach for generating the super key is to concatenate all values of a row and
then generate a single hash value for the concatenated string.

This would have the advantage that fewer hashes need to be generated. If the number of
false positives using the concatenated input string for the hash generation is lower or equal
to when OR’ing the row value hashes, the concatenation method could be preferred as the
hash function will have a higher overhead.

To evaluate this theory, we obtained 1,000 tables having 20 columns from the Wikipedia
dataset. The row values of each row in all tables are then sorted. After finding duplicates
among the tables and recording the false positives, we remove the last column from all
tables. The tables that now contain 19 columns are tested for duplicates again and the false
positives are reported. This is repeated until the tables contain only 1 column each.

We ran each test twice, one time using the super keys generated by logically OR’ing the hash
of the row values of each row and one time using the super key generated by concatenating
the row values of each row and then generating the XasH value. The super keys were
generated using XAsH with 64 bits.

0.0007
0.0006
0.0005
0.0004

0.0003

0.0002

False positive rate [%]

0.0001

0
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Number of columns per table

e OR'iNG

Concatenated
Fig. 5: False positives of XasH with different input formats

Figure 5 shows the FP rate for each group of columns per table for both approaches. It can
be observed that generating the super key based on OR’ing has fewer false positives for <6
columns per table, while concatenation has fewer false positives for >6 columns per table

The false positive rate is increased when using OR’ing when there are more columns per
table. This is due to an increased number of 1-bits existing in the super key when more hash
values are combined using the bitwise OR. When using concatenation to generate the super
key, this problem does not occur.

This characteristic also explains the spike using concatenation on tables with fewer columns.



386 Maximilian Koch, Mahdi Esmailoghli, S6ren Auer, Ziawasch Abedjan

When using concatenation, there is still the same limited number of 1-bits is used as for
more columns, while OR’ing uses more 1-bits to encode the rows more uniquely.

5.4 Experimental Summary

The number of false positives has a direct influence on the runtime of the pairwise table
comparison and duplicate table discovery. The false positive ratio increases with the number
of columns as the same hash function has to represent more information. We also conducted
preliminary experiments on the effect of Null values on our hash functions. For input tables
that only contain null values in one or multiple rows, all hash functions have an equally high
percentage of false positives and therefore a high runtime. The same row values produce the
same hash value. When the hash values are logically OR’ed, the super key generated is the
same for the row, no matter whether the table consists of 1 or 10 columns.

Increasing the hash size decreased the number of false positives for all hash functions. This
however leads to more storage space required to store the hashes.

6 Conclusion

We explored the benefits of using hash-based filters in finding duplicate tables. We showcased
the duplicate table discovery use case as well as the pairwise comparison use case for lake
de-duplication.

The evaluation shows that using hash functions generally improves the overall runtime. In
particular, XasH shows the highest promise, followed by SimHash, CityHash, and MDS5. In
comparison to the original use case of multi-column join discovery, one can say that it is
possible to further simplify XasH for efficiency reasons as rotation plays a minor role. The
duplicate detection setting is already stricter than join discovery as the probing requires the
equality of the hash functions and one-sided containment.

A challenge for all hash functions is when tables with many columns have to be encoded, as
the length of a row negatively impacts the pruning power of the hash function.

Future improvements for table de-duplication could be to consider hashing for the grouping
phase of large table corpora and to devise algorithms that are independent of lake indexes.
Furthermore, it would be interesting to research fuzzy table duplicates. Our current
approaches consider tables to be duplicates only when two tables contain the same set of
tuples regardless of row and column order.

Acknowledgements. This project has been supported by the German Research Foundation
(DFG) under grant agreement 387872445.



Duplicate Table Discovery with Xash 387

References

[Ab16]

[Ar20]

[Au07]

[Au20]

[Br97]

[CCBO02]

[CGS03]

[Chl2a]

[Ch12b]

[Ch21]

[Ebl5a]

Abedjan, Z.; Morcos, J.; Ilyas, I. F.; Ouzzani, M.; Papotti, P.; Stonebraker, M.:
DataXFormer: A robust transformation discovery system. In: Proceedings of the
International Conference on Data Engineering (ICDE). IEEE Computer Society,
pp. 1134-1145, 2016, urL: https://doi.org/10.1109/ICDE.2016.7498319.

Armbrust, M.; Das, T.; Paranjpye, S.; Xin, R.; Zhu, S.; Ghodsi, A.; Yavuz, B.;
Murthy, M.; Torres, J.; Sun, L.; Boncz, P. A.; Mokhtar, M.; Hovell, H. V,;
Tonescu, A.; Luszczak, A.; Switakowski, M.; Ueshin, T.; Li, X.; Szafranski, M.;
Senster, P.; Zaharia, M.: Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proceedings of the VLDB Endowment (PVLDB)/,
pp- 3411-3424, 2020.

Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: The Semantic Web. Springer Berlin
Heidelberg, pp. 722-735, 2007.

Auer, S.; Oelen, A.; Haris, M.; Stocker, M.; D’Souza, J.; Farfar, K. E.; Vogt, L.;
Prinz, M.; Wiens, V.; Jaradeh, M. Y. Bibliothek Forschung und Praxis 44/3,
pp- 516-529, 2020, uRL: https://doi.org/10.1515/bfp-2020-2042.

Broder, A.Z.; Glassman, S. C.; Manasse, M. S.; Zweig, G.: Syntactic Clustering
of the Web. Comput. Networks 29/8-13, pp. 1157-1166, 1997, URL: https:
//doi.org/10.1016/S0169-7552(97)00031-7.

Cooper, J. W.; Coden, A.; Brown, E. W.: Detecting similar documents using
salient terms. In: Proceedings of the International Conference on Information
and Knowledge Management (CIKM). ACM, pp. 245-251, 2002, urL: https:
//doi.org/10.1145/584792.584835.

Conrad, J. G.; Guo, X. S.; Schriber, C. P.: Online duplicate document detection.
In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM). ACM Press, 2003.

Christen, P.: A Survey of Indexing Techniques for Scalable Record Linkage
and Deduplication. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 24/9, pp. 1537-1555, 2012.

Christen, P.: Data Matching: Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer Publishing Company,
Incorporated, 2012, 1sBN: 3642311636.

Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis, G.; Stefanidis, K.:
An Overview of End-to-End Entity Resolution for Big Data. ACM Comput.
Surv. 53/6, 127:1-127:42, 2021, urRL: https://doi.org/10.1145/3418896.

Eberius, J.: The Dresden Web Table Corpus, 2015, URL: https://wwwdb.inf.
tu-dresden.de/misc/dwtc/, visited on: 04/27/2022.


https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1515/bfp-2020-2042
https://doi.org/10.1016/S0169-7552protect 
elax $97protect 
elax protect �egingroup immediate write @unused   def MessageBreak  
 let protect edef  Your command was ignored.MessageBreak Type  I <command> <return>  to replace it with another command,MessageBreak or  <return>  to continue without it.  errhelp let def MessageBreak  
                def protect �egingroup def MessageBreak {
            }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup   errmessage  LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help  protect �egingroup def MessageBreak {
            }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup  endgroup 00031-7
https://doi.org/10.1016/S0169-7552protect 
elax $97protect 
elax protect �egingroup immediate write @unused   def MessageBreak  
 let protect edef  Your command was ignored.MessageBreak Type  I <command> <return>  to replace it with another command,MessageBreak or  <return>  to continue without it.  errhelp let def MessageBreak  
                def protect �egingroup def MessageBreak {
            }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup   errmessage  LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help  protect �egingroup def MessageBreak {
            }let protect immediatewrite m@ne {LaTeX Info: Active space character found while output routine is active MessageBreak This may be a bug in a package file you are using.}endgroup  endgroup 00031-7
https://doi.org/10.1145/584792.584835
https://doi.org/10.1145/584792.584835
https://doi.org/10.1145/3418896
https://wwwdb.inf.tu-dresden.de/misc/dwtc/
https://wwwdb.inf.tu-dresden.de/misc/dwtc/

388 Maximilian Koch, Mahdi Esmailoghli, S6ren Auer, Ziawasch Abedjan

[Eb15b]

[EQA22]

[Fel8]

[Fil5]

[FSF20]

[Ga22]

[GF98]

[He06]

[Jal9]

[Jo72]

[KPN20]

Eberius, J.; Thiele, M.; Braunschweig, K.; Lehner, W.: Top-k Entity Augmen-
tation Using Consistent Set Covering. In: Proceedings of the International
Conference on Scientific and Statistical Database Management (SSDBM).
Association for Computing Machinery, 2015.

Esmailoghli, M.; Quiané-Ruiz, J.-A.; Abedjan, Z.: MATE: Multi-Attribute
Table Extraction. In: Proceedings of the VLDB Endowment (PVLDB). Apr.
2022.

Fernandez, R. C.; Abedjan, Z.; Koko, F.; Yuan, G.; Madden, S.; Stonebraker, M.:
Aurum: A Data Discovery System. In: Proceedings of the International Confer-
ence on Data Engineering (ICDE). IEEE Computer Society, pp. 1001-1012,
2018, URL: https://doi.org/10.1109/ICDE.2018.00094.

Fisher, J.; Christen, P.; Wang, Q.; Rahm, E.: A Clustering-Based Framework
to Control Block Sizes for Entity Resolution. In. KDD 15, Association for
Computing Machinery, Sydney, NSW, Australia, pp. 279-288, 2015, 1sBN:
9781450336642, URL: https://doi.org/10.1145/2783258.2783396.

Fernandez, R. C.; Subramaniam, P.; Franklin, M. J.: Data Market Platforms:
Trading Data Assets to Solve Data Problems. Proceedings of the VLDB
Endowment (PVLDB)/, pp. 19331947, 2020.

Gagliardelli, L.; Papadakis, G.; Simonini, G.; Bergamaschi, S.; Palpanas, T.:
Generalized Supervised Meta-blocking. Proceedings of the VLDB Endowment
(PVLDB) 15/9, pp. 1902-1910, 2022, urL: https://www.v1ldb.org/pvldb/
voll5/p1902-gagliardelli.pdf.

Grossman, D. A.; Frieder, O. In: Information Retrieval: Algorithms and Heuris-
tics. Springer US, pp. 134137, 1998.

Henzinger, M. R.: Finding near-duplicate web pages: a large-scale evaluation of
algorithms. In: Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR). ACM, pp. 284—
291, 2006, URL: https://doi.org/10.1145/1148170.1148222.

Jaradeh, M. Y.; Oelen, A.; Farfar, K. E.; Prinz, M.; D’Souza, J.; Kismihok, G.;
Stocker, M.; Auer, S.: Open Research Knowledge Graph: Next Generation
Infrastructure for Semantic Scholarly Knowledge. In: Proceedings of the 10th
International Conference on Knowledge Capture. K-CAP ’19, Association for
Computing Machinery, Marina Del Rey, CA, USA, pp. 243-246, 2019, 1sBN:
9781450370080, URL: https://doi.org/10.1145/3360901.3364435.

Jones, K. S.: A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28/1, pp. 11-21, Jan. 1972.

Koumarelas, I. K.; Papenbrock, T.; Naumann, F.: MDedup: Duplicate Detection
with Matching Dependencies. Proceedings of the VLDB Endowment (PVLDB)
13/5, pp. 712-725, 2020, UrL: http://www.v1ldb.org/pvldb/voll3/p712-
koumarelas.pdf.


https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1145/2783258.2783396
https://www.vldb.org/pvldb/vol15/p1902-gagliardelli.pdf
https://www.vldb.org/pvldb/vol15/p1902-gagliardelli.pdf
https://doi.org/10.1145/1148170.1148222
https://doi.org/10.1145/3360901.3364435
http://www.vldb.org/pvldb/vol13/p712-koumarelas.pdf
http://www.vldb.org/pvldb/vol13/p712-koumarelas.pdf

Duplicate Table Discovery with Xash 389

[KTR10]

[Kul7]

[Li20]

[LSR21]

[MJSO07]

[Nal8]

[PA22]

[Si22]

[Te22]

[Th20]

[TSPOS]

Ko&pcke, H.; Thor, A.; Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. Proceedings of the VLDB Endowment (PVLDB)
3/1, pp. 484-493, 2010, URL: http://www.vldb.org/pvldb/v1db2010/pvidb%
5C_vol3/E04.pdf.

Kumar, N.; Antwal, S.; Samarthyam, G.; Jain, S.: Genetic optimized data
deduplication for distributed big data storage systems. In: 2017 4th International
Conference on Signal Processing, Computing and Control (ISPCC). Sept. 2017.

Li, Y.; Li, J.; Suhara, Y.; Doan, A.; Tan, W.: Deep Entity Matching with Pre-
Trained Language Models. Proceedings of the VLDB Endowment (PVLDB)
14/1, pp. 50-60, 2020, UrL: http://www.vldb.org/pvldb/voll4/p50-1i.pdf.

Lerm, S.; Saeedi, A.; Rahm, E.: Extended Affinity Propagation Clustering for
Multi-source Entity Resolution. In: Datenbanksysteme fiir Business, Technolo-
gie und Web (BTW 2021), 19. Fachtagung des GI-Fachbereichs ,,Datenbanken
und Informationssysteme"(DBIS), 13.-17. September 2021, Dresden, Germany,
Proceedings. Vol. P-311. LNI, Gesellschaft fiir Informatik, Bonn, pp. 217-236,
2021, UrRL: https://doi.org/10.18420/btw2021-11.

Manku, G. S.; Jain, A.; Sarma, A. D.: Detecting near-duplicates for web crawling.
In: Proceedings of the International World Wide Web Conference (WWW).
ACM Press, 2007.

Nargesian, F.; Zhu, E.; Pu, K. Q.; Miller, R. J.: Table Union Search on Open
Data. Proceedings of the VLDB Endowment (PVLDB) 11/7, pp. 813-825,
2018, urL: http://www.vldb.org/pvldb/volll/p813-nargesian.pdf.

Pike, G.; Alakuijala, J.: Introducing CityHash | Google Open Source Blog,
2022, urL: https://opensource.googleblog.com/2011/04/introducing-
cityhash.html, visited on: 08/25/2022.

Simonini, G.; Zecchini, L.; Bergamaschi, S.; Naumann, F.: Entity Resolution
On-Demand. Proceedings of the VLDB Endowment (PVLDB) 15/7, pp. 1506—
1518, 2022, uRL: https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf.

Technische Informationsbibliothek: Comparisons - ORKG, 2022, URL: https:
//orkg.org/about/15/Comparisons, visited on: 08/02/2022.

Thirumuruganathan, S.; Tang, N.; Ouzzani, M.; Doan, A.: Data Curation with
Deep Learning. In: Proceedings of the International Conference on Extending
Database Technology (EDBT). OpenProceedings.org, pp. 277-286, 2020, URL:
https://doi.org/10.5441/002/edbt.2020.25.

Theobald, M.; Siddharth, J.; Paepcke, A.: SpotSigs: robust and efficient near
duplicate detection in large web collections. In: Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). ACM, pp. 563-570, 2008, URL: https://doi.org/10.1145/1390334.
1390431.


http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/E04.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/E04.pdf
http://www.vldb.org/pvldb/vol14/p50-li.pdf
https://doi.org/10.18420/btw2021-11
http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf
https://orkg.org/about/15/Comparisons
https://orkg.org/about/15/Comparisons
https://doi.org/10.5441/002/edbt.2020.25
https://doi.org/10.1145/1390334.1390431
https://doi.org/10.1145/1390334.1390431

390 Maximilian Koch, Mahdi Esmailoghli, S6ren Auer, Ziawasch Abedjan

[WLF11]

[Wo22]

[Xill]

[Yul6]

[Zh19]

Wang, J.; Li, G.; Feng, J.: Fast-join: An efficient method for fuzzy token matching
based string similarity join. In: Proceedings of the International Conference on
Data Engineering (ICDE). IEEE Computer Society, pp. 458-469, 2011, urL:
https://doi.org/10.1109/ICDE.2011.5767865.

World Bank: GDP (current US$), Apr. 2022, urL: https://data.worldbank.
org/indicator/NY.GDP.MKTP.CD, visited on: 04/27/2022.

Xiao, C.; Wang, W.; Lin, X.; Yu, J. X.; Wang, G.: Efficient similarity joins
for near-duplicate detection. ACM Transactions on Database Systems (TODS)
36/3, pp. 1-41, 2011.

Yu, M.; Li, G.; Deng, D.; Feng, J.: String similarity search and join: a survey.
Frontiers Comput. Sci. 10/3, pp. 399-417, 2016, UrRL: https://doi.org/10.
1007/s11704-015-5900-5.

Zhu, E.; Deng, D.; Nargesian, F.; Miller, R. J.: JOSIE: Overlap Set Similarity
Search for Finding Joinable Tables in Data Lakes. In: Proceedings of the
International Conference on Management of Data (SIGMOD). ACM, pp. 847—
864, 2019, urL: https://doi.org/10.1145/3299869.3300065.


https://doi.org/10.1109/ICDE.2011.5767865
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1007/s11704-015-5900-5
https://doi.org/10.1145/3299869.3300065

