
State Identification and Verification 
using a Model Checker 

Christopher Robinson-Mallett, Peter Liggesmeyer 

Fraunhofer IESE 
Fraunhofer Platz 1 

67663 Kaiserslautern 
mallett@iese.fraunhofer.de

peter.liggesmeyer@iese.fraunhofer.de 

Abstract: This paper presents a method for the application of model checking, i.e. 
verifying a finite state system against a given temporal specification, to the prob-
lem of generating test inputs. The generated test inputs allow state characterization, 
i.e. the identification and verification of internal states of the software under test by 
observation of the input/output behavior only. A test model is derived semi-
automatically from a given state based specification and the testing goal is speci-
fied in terms of temporal logic. On the basis of these inputs, a model checking tool 
performs the testing input generation automatically. In consequence, the complex-
ity of our approach is depending on the input model, the testing goal, and the ap-
plied model checking algorithm. The presented approach can be adapted with 
small changes to other model checking tools. It is a capable test generation 
method, whenever a state based behavioral specification of the software under test 
exists. Furthermore, it provides a descriptive view on state based testing, which 
may be beneficial in other contexts, e.g. education and program comprehension. 

1 Introduction 

Testing is an important, mandatory quality assurance technique in each software devel-
opment project. The automation of testing potentially reduces human errors as well as 
time and money efforts. Consequently, it has been an important research topic in the 
recent years. In this paper, we present a method for the automated generation of test 
inputs on the basis of state based specifications. Furthermore, we aim at the verification 
and identification of internal states of the implementation in the case the test is run in 
black box manner, and therefore observations are restricted to input/output behavior. 

Model Checking, i.e. verifying a finite state system against a given temporal specifica-
tion [CGP2000], has been established in the recent years as a powerful static verification 
method. The two most prominent approaches to model checking have been introduced 
independently by Clarke and Emerson [EC1981], based on Computational Tree Logic 
(CTL), and Quielle and Sifakis [QS81], based on Linear Temporal Logic (LTL). A de-
tailed overview of both approaches can be found in [CGP2000]. In this paper, we will 
concentrate on the application of the approach by Clarke and Emerson and only a small 
subset of CTL. 
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The construction of checking sequences that can be used to check conformance of an 
implementation against its state based specification has been a major research topic since 
the earliest days of computing [Mo1956]. The conformance check is based on the deriva-
tion of the internal states of the software under test from its input/output behavior. 
Therefore, a checking sequence is constructed from a cover set, e.g. transition cover, and 
a set of input sequences that are used to characterize each state of the software corre-
sponding to its specification. The construction of cover sets from state based specifica-
tions has been under research for many years and seems to be well understood. Recent 
applications of model checking to the problem of generating test inputs on the basis of 
coverage criteria bridge the gap between static verification and testing on the basis of 
state based specifications, e.g. [Hu2004]. 

In the domain of state characterization problems we briefly discuss the two most promi-
nent: 1) State Identification: The problem is to identify the unknown initial state of a 
state machine under test. 2) State Verification: The problem is to verify that a state ma-
chine under test is in a particular state at a specific stage of the test. Both problems are 
addressed with the application of characterization sets. From all the different kinds of 
characterization sets some efficiently solve the first, e.g. distinguishing sequences 
[Gö70], and others aim at the second, e.g. Unique Input Output Sequences [SD1988]. 
However, any of the presented methods can be applied to both problems, more or less 
efficiently. In this paper, we follow a more general approach of generating characteriza-
tion sets without regarding whether state identification or state verification is addressed. 
In chapter 6 we present an example of a FSM that is used to construct different forms of 
characterization sets, which can be applied to these problems. In Table 1, Table 2, and 
Table 3 these resulting characterization sets are presented. 

Characterization sets: A characterization set is a set of input sequences, referred to as 
state characterization sequences, on a minimal finite state machine that produces differ-
ent output for each different initial state. In this context, the initial state is the state in 
which the software resides before executing the input sequence. Referring to the exam-
ple in Section 6 of this paper, a simple form of a characterization set that consists only of 
the input sequence baa decides each state of the finite state machine in Figure 2. 

In this paper, we present a method for the application of model checking in order to 
generate characterization sets that provide full fault coverage [Ch78] on minimal finite 
state machines. We present a general model and specifications of characterization sets in 
computational tree logic that can be used in a model checking tool to generate several 
kinds of characterization sets.  

This article is structured into seven sections, including the introduction in Section 1. In 
Section 2 we discuss related work and position our approach into the research area. In 
Section 3 the most important basics of state machines and the model checking tool UP-
PAAL are presented. In Section 4 our approach of generating characterization sets with 
UPPAAL is presented and its complexity is discussed in Section 5. In Section 6 an ex-
ample of the application of the presented method to an FSM is given. In Section 7 we 
conclude this paper and present future research topics. 
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2 Related Work 

The development of automata-theoretic testing methods was originally motivated by 
checking problems of sequential circuits [Mo1956]. The adoption of these methods to 
software has been an important research topic over decades. A detailed overview of 
automata-based testing methods can be found in a number of articles, e.g. [BP94], 
[SL1989]. Any of these automata-based testing methods are demanding a minimal, com-
plete finite state-machine. 

One of the earliest methods of automata-based testing was based on preset distinguishing 
sequences (DS) [Gö70], [He64], [Mo1956]. The major advantage of the DS method is 
the production of relatively short checking sequences. Sun et. al. presented in [SVJ98] an 
efficient method for the construction of unique input output sequences (UIO) [SD1988], 
though this method is not generating optimal results. In [Ch78] Chow presented the W-
method which produces relatively long checking sequences, but which is applicable to 
each minimal finite state machine. 

In [LY1994] Lee and Yannakakis presented a detailed study on the complexity of the 
construction of DS and UIO, with the negative result that both are PSPACE-complete. 
Furthermore, not for each minimal FSM a DS or UIO exists. Nevertheless, in our ex-
periments characterization set generation seemed applicable in a large number of cases, 
mainly depending on the length of the state characterization sequences and the quality of 
the model checking algorithm.  

The generation of DS was already presented in a preceding paper [RMLG2005]. In the 
same paper we also demonstrated the application of DS generation to finite state ma-
chines extended with data and transition guards. Here, we present a general method for 
the generation of DS, UIOs, W-sets from finite state machines. 

3 Preliminaries

This section provides a brief introduction to the theory of finite state machines (FSM) 
and to the semantics of the UPPAAL system and requirements description languages. 

3.1 Finite State Machine 

An FSM is defined by a tuple (S,s0,X,Y,fs,fy), where S is a finite set of local states (loca-
tions), s0 S is the initial state, X is a finite set of inputs, Y is a finite set of outputs, fs is 
the state transition function S X S, fy is the output function S X Y. Two states si,sj S
are called equivalent, if si or sj excited by any input sequence yield identical output se-
quences. An FSM is minimal, if there is no pair of equivalent states si,sj S, i j. For a 
detailed introduction to finite state machines and checking problems we recommend the 
work of Gill [Gi62]. 
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In a system of n parallel FSMs M1||M2||…||Mn the global state is the combination of 
each local state of the n state machines Mi.

3.2 UPPAAL Timed Automata 

In 1995 the model checker UPPAAL was presented [BLLP95]. It supports an extended 
version of timed automata [AD94]. Some of the extensions are integer variables and 
constants, send (!) and receive (?) synchronization, urgent and broadcast channels, and 
urgent and committed locations. Synchronization over a channel e is defined between a 
sending transition (e!) and a receiving transition (e?). Synchronization over an urgent 
channel is preferred to any conflicting synchronization over a not urgent channel. A 
broadcast channel allows synchronization of multiple automata in one step. A transition, 
which leaves an urgent state, cannot be delayed and must not possess guard conditions. 
In a committed location time must not be passing and an outgoing transition must be 
taken immediately.  

Initial

Location

Committed

Location

Urgent

Location

Location

with Invariant

Figure 1: UPPAAL Timed Automaton 

The example in Figure 1 presents an UPPAAL timed automaton, which defines locations 
of the four different types. The transition from the initial state is taken and clock c is set 
to 0. If c is greater than 3, the reflexive transition is taken, which synchronizes over 
channel sync1, increments variable i, and sets c to 0. If i is greater than 5 the transition to 
the urgent location is taken, which synchronizes over channel sync2 and sets i to 0. The 
transition to the committed location is urgently taken, when it receives a synchronization 
command over channel sync2. The transition that is leaving the committed location is 
immediately taken, and synchronizes over channel sync1.

The model checking tool UPPAAL supports a restricted form of CTL, of which we only 
need a small subset for the definition of reachability properties. A reachability property 
describes a state on a trace, in which a certain condition holds. The condition is ex-
pressed in terms of propositional logic. The CTL property E<> p demands the existence 
of a trace, expressed by E, on which in at least one state, expressed by <>, the formula p
holds.  
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4 Generating Characterization Sets with UPPAAL 

In the following chapter the product and the co-product represent the UPPAAL conjunc-
tion operator && and the disjunction operator ||. We prefer this general representation of 
logical expressions in order to ease the adaptation of our method to other model check-
ing approaches and tools. 

4.1 State Characterization Model 

In order to generate a characterization set for a FSM M with n local states, a state charac-
terization model Ms has to be derived from M. In Ms=D||M1||M2||…||Mn for each si S
with n=|S| exists an automaton Mi with si as its initial state. Note, the automata Mi are 
equivalent to M except of the initial states and the data extensions. An automaton D is 
defined as the representation of a test driver in order to trigger transitions and to evaluate 
the output products. Each automaton Mi is equipped with an variable outi, which is ini-
tialized with –1 and contains the actual output code on an execution path of Mi. Each 
transition tk of Mi is extended with a definition of outi corresponding to the produced 
output of tk. Therefore, each output channel ci of MS is mapped to a unique natural num-
ber li that is assigned to outi wherever an output over channel ci is produced. 

In order to evaluate n outputs synchronously on a single input sequence, each automaton 
Mi must execute synchronously with every Mj in MS. Therefore, each automaton Mi is 
synchronously triggered via broadcast communication with D, which also observes and 
evaluates the output variables outi. For each pair of output variables (outi,outj), i  j a 
Boolean variable distinctij is defined, which is initialized with false and set true, if on an 
execution path the condition outi  outj was at least once true. After each input and the 
corresponding outputs, the UPPAAL driver automaton evaluates, whether any of these 
conditions have become true and updates the corresponding distinctij variables. 

The distinction variable update is expressed in pseudo-code as: 

2

0 1

n

i

1-n

ij

ijji truedistinctthenoutoutfi

 It is expressed in the UPPAAL system description language as: 

2

0 1

n

i

1-n

ij

ijjiij )distinct:?trueoutout:(distinct
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4.2 Distinguishing Sequences 

A DS of a minimal FSM M consists of an input sequence for the automaton and a unique 
output sequence for each state of M. A state characterization model is used in order to 
generate a DS, which is complemented with a CTL formula. A DS of M exists, if any Mi

in Ms produces a different output on the same input. Therefore, each variable distinctij

must become true on an execution path, which is a DS. A single CTL formula is used to 
generate a DS as follows:  

F1:
2

0

1

1

n

i

n

ij

ijdistinctE

The UPPAAL model checker produces a (shortest) trace t once F1 holds on a search 
path. An input/output sequence can be constructed easily from t and M. A shortest trace, 
which is produced by UPPAAL in response to F1 on M, can be transformed into an op-
timal DS of M.

4.3 Unique Input Output Sequences 

A UIO verifies a specific state s of an FSM M, unless an equivalent state to s exists in M.
Therefore, a minimal FSM with n states demands n UIOs for the identification of each 
state. In order to generate these UIOs, a state characterization model is used, which is 
complemented with a specification in terms of CTL. For each state si, a specific CTL 
formula demands that Mi produces distinguishable output to any other Mj, where i j, and 
therefore the variables distinctij, note that distinctij=distinctji, become true. For an FSM 
with n states the UIOs are generated with the following set of formulae: 

F2:
1

0

1

0

)(:
n

i

n

j

ijM distinctjiEUIO

4.4 W-Sets 

A W-set contains a number of input sequences, which as a whole identify each state of a 
minimal FSM M when executed. A state characterization model is used in order to gen-
erate a W-set. The generation of a W-set demands the definition of a CTL formula for 
each pair of states (si,sj), which demands that Mi produces distinguishable output to Mj,
where i j, and therefore the variable distinctij becomes true. In a first step the W-set is 
generated with the following set of formulae: 

F3:
2

0

1

1

:
n

i

n

ij

ijdistinctEW
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In a second step all input sequences are eliminated from the set, which are contained as a 
starting sequence of another element in the same set.  

F4: }|{: WstWsW t

5 Complexity 

The complexity of CTL model checking has been discussed in a number of publications, 
e.g. [CGP2000]. Here, we will briefly discuss the complexity of generating DS, UIOs, 
and W-sets with UPPAAL under the assumption that breadth first search is used and no 
complexity reduction methods are applied. 

The complexity of the presented approach of generating characterization sets with the 
UPPAAL model checker, is depending on the input model, the characterization problem, 
and the model checking algorithm. A state characterization model does not imply a 
higher time complexity than the FSM, from which it is derived. Although, an FSM M is 
multiplied n times, where n is the number of states in M, and additional variables are 
needed, none of these modifications increase the time consumption of the model check-
ing problem. Only the space consumption is raised, due to the enlarged state representa-
tion, which is linear to the number of states n of M. It is well known that time complexity 
of a reachability problem under breadth first search is exponential to the length of the 
required path, which is in this case a shortest path. The length of a shortest state charac-
terization sequence is depending only on the automata structure. Also, time consumption 
is polynomial to the size of the input alphabet, which is only depending on M.

The time complexity of our approach of generating a state characterization sequence is 
independent of the number of states, polynomial to the size of the input alphabet, and 
exponential to the length of the shortest state characterization sequence.  

The generation of a single UIO is of the same complexity as the generation of a DS. 
Taking into account, that UIOs are generated for each state of a machine, time consump-
tion is linear to the number of states. The time consumption of the generation of a W-set
is polynomial (O(n2)) to the number of states n.
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Figure 2: FSM Test Model 

The generation of UIOs is based on weaker conditions than DS generation. Also, the 
criteria used for W-set generation are weaker than those for UIO and DS. This indicates 
that there might be a less time consuming solution for a W-set compared to UIO and for 
UIO compared to DS. Obviously, these indications do not decide, which method is gen-
erally the most efficient.  

6 Example

In Figure 2, Figure 3, and Figure 4 the example of a state characterization model of an 
FSM is presented. The following sections describe the generation of DS, UIOs, and W-
sets on the basis of the same characterization model, derived from the FSM in Figure 2. 

The FSM in Figure 2 contains the four states A, B, C, and D. The characterization model 
is constructed by multiplication of the FSM corresponding to the number of states and 
mapping of the outputs e and f to data values. Corresponding to the states of the FSM, in 
the characterization model exist the four automata MA, MB, MC, and MD with the initial 
states SA, SB, SC, and SD. The characterization model contains the output variables A, B,
C, and D that hold the actual output values of the corresponding automata. The outputs e
and f of the FSM are mapped to the data values 0 and 1. For the inequations A B, A C,
A D, B C, B D, C D corresponding boolean distinction variables AB, AC, AD, BC, BD, 
CD are defined. A distinction variable XY is initially defined false and will permanently 
become true once the inequation X Y becomes true on a trace. The evaluation of the 
output variables and the definition of the distinction variables are performed in the driver 
automaton. 

The state characterization model driver in Figure 3 contains an initial committed loca-
tion and an urgent location. In the initial, committed location the transitions to the urgent 
location with the sending synchronizations a! and b! are enabled, and non-
deterministically triggered. The transitions that are leaving the initial, committed loca-
tion are synchronously triggered with at most a single transition in each automaton of the 
state characterization model. The driver stays in the urgent location until each transition 
starting in a committed location in the state characterization model has been executed. 
Afterwards, the output evaluation and distinction variable definition is performed.  
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Figure 3: State Characterization Model Driver 

6.1 DS Generation 

A single characterization property is constructed by application of formula F1 in order to 
generate a distinguishing sequence. Therefore, a distinguishing sequence exists, if the 
following property becomes true on the state characterization model: 

E<> AB&&AC&&AD&&BC&&BD&&CD 

The UPPAAL model checking tool delivers a shortest trace on that the property becomes 
true. From this trace the input sequence baa is extracted, which is a shortest DS for the 
presented example. The characterization of states by application of the generated DS to 
the FSM is demonstrated in table 1. 

Table 1: DS of Figure 2 

 input 

initial
state

baa 

A eff 

B fef 

C fff

D efe 

Table 2: UIO of Figure 2 

initial
state

i/o 

A aa/fe 

B a/e

C ba/ff

D bb/ee

Table 3: W of Figure 2 

initial
state

a b aa 

A f e fe 

B e f ef 

C f f ff 

D f e ff 

6.2 UIO Generation 

The generation of a UIO sequence for each state of the given example follows formula 
F2. The complete set of UIO sequences exist, if the following properties become true:  

E<> AB&&AC&&AD; E<> AB&&BC&&BD;  
E<> AC&&BC&&CD; E<> AD&&BD&&CD 

The UPPAAL model checker delivers a shortest trace for each query. Table 2 demon-
strates the application of the generated UIOs on the example in Figure 2. 
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Figure 4: State Characterization Model 
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6.3 W-set generation 

The construction of a W-set follows formulae F3 and F4. In a first step the UPPAAL 
model checker produces a set of input sequences, which characterize each state as a 
whole. 

E<> AB; E<> AC; E<> AD; E<> BC; E<> BD; E<> CD 

The UPPAAL model checking tool produces a shortest trace for each formula. These 
traces already form a valid W-set, which possibly contains redundant elements corre-
sponding to formula F4. Therefore, in a second step the redundant traces are eliminated. 
The W-set is defined as follows: 

W={b,ab}  

The results of W-set generation are presented in Table 3, where the column with redun-
dant input a is filled grey.  

7 Conclusion

Model checking and automatic test-case generation have proven useful in many applica-
tion areas. In this paper we presented an approach for the automated generation of test 
inputs using model checking. The generated test inputs allow the identification and veri-
fication of internal states of the software under test corresponding to the state based 
specification that is used for test generation. The ability to derive the internal state of the 
software under test by input/output observation only is especially in those cases benefi-
cial, when black box testing is performed. 

We presented an approach for automated generation of preset distinguishing sequences,
unique input output sequences, and W-sets with the model checker UPPAAL. We have 
shown that model checking is an appropriate method for generating checking sequences 
for finite state machines. Furthermore, it can be applied to finite state machines extended 
with bounded integers and data, as presented for the generation of DS in [RMLG2005].  

The presented approach can be adapted to other model checking tools in order to gener-
ate test inputs. The problem of generating a characterization set is reduced to the defini-
tion of a state characterization model and a specification in terms of temporal logic that 
describes the specific characterization set. The generation of the characterization set is 
automatically achieved by the model checking tool. For these reasons the complexity 
and the capability of our approach are mainly depending on the used model checking 
tool. This includes the generation of optimal results depending on the ability of the 
model checker to produce shortest traces. The complexity of our approach corresponds 
to the results, which were presented by Lee and Yannakakis [LY1994]. 
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For future work we are planning the application of this general approach to finite state 
machines extended with data and transition guards. Furthermore, the ability of UPPAAL 
to handle timed specifications we will apply our approach on timed state characterization 
problems [ENN02]. In order to achieve better performance of our approach, we plan to 
adapt this method to heuristic and symbolic model checking approaches. The application 
of complexity reduction methods, e.g. data abstraction [CGP2000], is not extensively 
explored but will be part of our future work. Furthermore, we know only little about the 
practical applicability. For the near future we are planning to perform a number of indus-
trial and experimental case studies in order to validate the presented approach.  

References 

[AD94] Alur R.; Dill L.: A Theory of Timed Automata. Theoretical Computer Science, 
126(2):183–235. 1994. 
[BLLP95] Bengtsson J.; Larsen K. G.; Larsson F.; Pettersson P.; Yi W.: UPPAAL - A Tool 
Suite for Automatic Verification of Real-Time Systems, Workshop on Verification and Control of 
Hybrid Systems, DIMACS, 1995 
[BP94] Bochmann G. v.; Petrenko A.: Protocol Testing: Review of Methods and Relevance 
for Software Testing. Proc. ISSTA’94, pages 109–124. ACM Press. 1994. 
[Ch78] Chow T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE 
Transactions On Software Engineering, 4, Nr. 3. 1978. 
[CGP2000] Clarke M.; Grumberg O.; Peled D. A.: Model Checking. MIT Press. Boston. 2000. 
[EC1981] Clarke E.M.; Emerson E.A.: Design and Synthesis of Synchronization Skeletons 
using Branching Time Temporal Logic. Workshop on Logic of Programs. Yorktown Heights, NY. 
LNCS 131, Springer Press. 1981.  
[ENN02] En-Nouaary A., Dsoulli R., Khendek F.: Timed Wp-Method: Testing Real-Time 
Systems. IEEE Transactions on Software Engineering. Vol. 28 (11). November 2002 
[Gi62] Gill A.: Introduction to the Theory of Finite-State Machines. McGraw Hill.  
Berkeley. 1962 
[Gö70] Gönenc G.: A Method for the Design of Fault Detection Experiments. IEEE Trans-
actions on Computers, C-19, June, Nr. 6. 1970. 
[He64] Hennie F.C.: Fault-Detecting Experiments for Sequential Circuits. Symposium on 
Switching Circuit Theory and Logical Design NJ. 1964. 
[Hu2004] Huhn M.; Mücke T.: Generation of Optimized Testsuites for UML Statecharts with 
Time. Testing of Communicating Systems (TestCom’04). Oxford. Springer. 2004. 
[LY1994] Lee D.; Yannakakis M.: Testing Finite-state Machines: State identification and 
verification. IEEE Transactions on Computers, 43(3). 1994. 
[Mo1956] Moore E. F.: Gedanken-Experiments on Sequential Machines. Automata Studies 
(Annals of Mathematics Studies), 34. 1956.  
[QS81] Quielle J.P.; Sifakis J.: Specification and Verification of Concurrent Systems in 
CESAR, Proc. 5th Intern. Symp. on Programming. 1981 
[RMLG2005] Robinson-Mallett C.; Mücke T.; Liggesmeyer P.; Goltz U.: Generating Optimal 
Distinguishing Sequences with a Model Checker. Advances in Model-Oriented Software Testing 
(A-MOST’05). St. Louis. 2005. 
[SD1988] Sabnani K.; Dahbura A.: A Protocol Test Generation Procedure. Computer Net-
works and ISDN Systems, 15. North-Holland. 1988. 
[SL1989]  Sidhu D.; Leung T.-K.: Formal Methods for Protocol Testing: A Detailed Study. 
IEEE Transactions on Software Engineering, 15(4). 1989. 
[SVJ98] Sun D.; Vinnakota B.; Jiang W.: Fast State Verification. Conference on Design 
Automation. ACM Press. 1998. 

142


