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Abstract: Declarative modeling and model driven software engineering seem to be
two fields of research with completely different focus. However, the term “modeling”
is used by both communities and both communities claim to use “declarative” tech-
niques. In this paper we give a small overview on some of the differences of both
fields and present our model-to-model transformation language which brings together
constraint solving, optimization, and model-to-model transformation. The language
can be seen as an example how intuitively both communities can integrate to explore
new applications.

1 Introduction

In the declarative modeling community the term model describes a set of facts about the
domain of possible solutions. In model driven software engineering models are used to cre-
ate software from them. However, most software engineering models are based on graphs,
while most declarative models are based on variables and constraints. Model-to-model
transformations transform software engineering models. Similar to declarative modeling
techniques they may be described using declarative model-to-model transformation lan-
guages. When it comes to finding similarities between both communities, these languages
therefore classify as interesting candidates. Our model-to-model transformation language,
called “Solverational” can be used to define constraint problems in model-to-model trans-
formations. In fact our model transformation engine transforms model-to-model transfor-
mations written in “Solverational” into constraint solving problems (see Section 4). These
similarities can be used to explore the theory behind both approaches, to use similar mathe-
matical tools to compare the complexity and cardinality of model-to-model transformation
languages and declarative modeling languages. We demonstrate how our language maps
to a CSP and believe that this approach could be used to compare many other declarative
model transformation languages with delcarative modeling languages as well.

The contributions in this paper are:

e Examining the differences of models used for model-to-model transformation and
declarative models

e Presenting model-to-model transformation as a use case for declarative modeling



e Mapping Solverational to a CSP as an example for a larger set of graph grammars

1.1 Terminology

[Sta73] gives an introduction into the term “model” in general, while [Lud03] specializes
the term for models used in software engineering. We use the term as proposed by them by
referring to software engineering model, but also use “model” for constraint based mod-
els. Software engineering models are graphs. The nodes are called model elements and
edges are called associations. Model elements adhere to a specification, called a class,
and are also called objects. They may have attributes. One major difference is that mod-
els from model-driven software engineering better describe static aspects while constraint
programs (declarative models) describe the outputs of algorithms. This is similar to declar-
ative model-to-model transformations, which also describe algorithms. Therefore, in the
following, we focus on model-to-model transformation.

In fact, the term “declarative” is used very similar in both communities. “Declarative”
means that developers do not specify how s.th. is executed but facts about the result. How-
ever, in the model-driven software engineering community there are many cases where
visual workflow languages are called declarative even though the language itself is more
in form of a procedural language (e.g. Microsoft calls the Windows Workflow Foundation
language a declarative language [BS06]). We conclude that the term declarative may be
used for workflows as well, as long as the tasks in the workflow are of very abstract nature.

1.2 Paper Outline

The next Section introduces the state of the art of model-to-model transformation which
in some way makes use of constraint solving. Section 3 gives a small introduction into
the background of model-to-model transformation. The following three Sections demon-
strate how to map model transformations to CSPs and present the implementation of our
language called “Solverational”. Section 5 presents the differences of our approach to a
classical well-known declarative modeling language. Section 6 presents an example to
provide an intuitive way of understanding Solverational. The last Section summarizes the
paper and provides opportunities for further research.

2 Related Work

Our work on mapping model-to-model transformations to declarative modeling is related
to a diversity of works in model driven software engineering.

Software engineering models often are enhanced by constraints using OCL [OMGO06].
These constraints may restrict almost any aspect of the models for which they have been



specified. Cabot et al. explain in [CCRO8] how UML class diagrams having constraints
can be checked by transforming the models into a CSP. It is therefore related to our work as
it also maps constraints used in the software engineering community into a CSP. However,
this work does not transform models and therefore cannot be seen as a declarative descrip-
tion of model-to-model transformation and addresses the validation of models rather than
their transformation.

Merging several models into one model is called model weaving, especially in the case of
the adoption of aspect oriented programming for MDSD. If constraints are used in several
target models, the model merging process needs to satisfy all constraints in the models.
Therefore, White et al. ([WGS09]) use mappings to CSPs to solve the constraints during
the weaving process automatically. However, the work of White is not a generic model-
to-model transformation language.

Rudolf [Rud00] uses constraint solving to search for patterns in graphs. This concept
is applied to graph transformations using Attributed Graph Grammars. The technique is
explained in Section 3 in more detail. Based on this approach, El-Boussaidi and Mili
present an approach that is able to search for model patterns [EBMOS]. This work does
not solve constraints on target model elements, as is natural to our approach. Still this
work presents how to map the process of pattern matching to CSPs, which can be used as
a basis for mapping the complete process of model-to-model transformation to CSPs - c.f.
Section 3.

Kessentini et al. treat the generation of a model-to-model transformation program as an op-
timization problem [KSBOS8]. They use particle swarm optimization to transform models.
Thereby, a model-to-model transformation is being constructed by providing an example,
and not by a declarative model-to-model transformation language. Thereby, we take a
different approach to ease the declaration of model-to-model transformation.

Chenouard et al. present an approach which models different declarative constraint mod-
eling languages using meta-modeling from MDSD [CGS08]. A CSP then is an instance
of the meta-model and therefore expressed in a visual language. These models can then be
transformed into a different declarative programming language using standard model-to-
model transformation tools (ATL). However, the approach transforms declarative models
into different declarative models and therefore does not solve a CSP but enables a form
of solver independence. Our model-to-model transformation with constraints therefore is
only related concerning the use of models in connection with declarative modelling lan-
guages.

3 Theoretic Background

Every graph transformation is composed of several transformation rules, each having a
right hand side (RHS) and a left hand side (LHS). The LHS is used to search for a sub-
graph in the source graph, while the RHS is used to search and enforce target elements
which are again nodes or edges of a target graph. Model-to-model transformations are
a specific class of graph grammars, which perform transformations over software engi-



neering models. A small description of QVT Relations and Solverational can be found in
Section 4, but for better readability an example of LHS and RHS can be found in Figure
3. Each “domain” represents one side of the rule. If the rule is executed from “abstractu-
imodel” to “concreteuimodel”, then the domain connected to “a” (i.e. it matches patterns
in source model a) will be the LHS and the domain connected to “b” will be the RHS (i.e.
it performs the rule action on target model b).

Rudolf demonstrated in [Rud00] that searching (“pattern matching”) for model elements
can be implemented using constraint solving problems. Each model element from the sub-
graph that is being searched for, i.e. each graph node, and each association (graph edge)
is mapped to a CSP variable. The domains are elements and edges from the source graph.
Constraints represent the edges and their direction. When the problem has been solved,
the variables are instantiated to values (from the source graph) representing appropriate
model elements and edges.

Our language called “Solverational”, which is presented in Section 4, maps the RHS of
model-to-model transformation to non-linear CSPs. Attributes of objects of model el-
ements are mapped to CSP variables, while the allowed classes of the objects will be
mapped to variables, if there are a multitude of different objects allowed.

To show how model transformations and constraint solving relate to each other, a com-
plete mapping from Solverational to a CSP is needed. However, currently it does not use
constraint solving for pattern matching, but is using simpler search methods which are not
implemented using a declarative programming approach. It is heavily based on concepts
from the QVT Relations standard [OMGO7], but enhances it with constraint solving and
optimization. Therefore it is able to map attributes of target model elements to variables
in a CSP.

3.1 Mapping Graph Transformations to CSPs

Solverational has been implemented by providing a mapping to constraint solving and
constraint optimization problems, but only concerning the target model (RHS).

By using the ideas from [Rud00] pattern matching can be expressed as a constraint solv-
ing problem. Therefore, the pattern matching algorithm of Solverational could also be
expressed as a CSP. By refferring to this (currently unimplemented) abstract concepts,
both the LHS and the RHS are based on constraint solving. This means that they can both
be expressed as a CSP. Pattern matching is done by the first CSP, enforcement is done by
the second CSP from our language (which is implemented).

In model-to-model transformation languages LHS and RHS can be connected using vari-
ables (from the language), which contain information from the source model. This is also
a missing link between the two CSPs which also needs to be expressed in CSP terms.
Initial investigation results indicate that this could be expressed using “and” between the
constraints (usually implemented as reified constraints), such that the LHS constraints and
the RHS constraints match, which would normally be used in the same transformation
rule.



We believe that many other model-to-model transformation languages can be seen as spe-
cial cases of this concept. The first CSP could be used for most model-to-model trans-
formation languages, as it is a generic pattern matching algorithm for model-to-model
transformation languages. The second is not needed for most languages, because the vast
majority uses simple assignments based on equality. However, equality can be seen as a
constraint as well (although the most basic one). Therefore, most declarative relational
transformation languages can also be mapped to a CSP with equality constraints.

Note that this is not really valid for in-place transformations, which need the process to be
re-executed, which is not handled by our model-to-model transformation engine. However,
since each possible transformation may be seen as a transitive application of different
transformation rules, the concepts may still be valid, but we did not investigate this matter.

4 Model-to-Model Transformation using Constraint Solving

In the following we present our implementation, a language called Solverational. It has
been implemented in a transformation engine which maps the process of using constraints
on attributes of target model elements to a CSP.

Our model-to-model transformation language “Solverational” is based on the QVT Rela-
tion language [OMGO7] which is part of a family of standardized model-to-model trans-
formation languages. The standard is composed of an imperative language (QVT Opera-
tional), a low-level declarative language (QVT Core) and a high-level declarative language
- QVT Relations. We chose QVT Relations as the basis for our language as it is already
known to be rather declarative. This declarativity results from a relational programming
approach to model transformation. However, instead of the logic programming based ap-
proach which is commonly used to implement declarative model-to-model transformation
engines, it maps the model-to-model transformation to a CSP. As our language extends the
current language with constraints it introduces an even greater level of declarativity into
model-to-model transformation.

Other model-to-model transformation approaches (e.g. [LLCO0S5]) also try to incorporate
constraints in the transformation process, but the process is not able to actually solve the
constraints.

Each QVT Relations transformation is composed of several transformation rules, called
“relations”. A relation is a mapping from a domain of source model elements (also called
domain in QVT) and associations (called “ObjectTemplateExpressions”) to another do-
main which also consists of model elements and associations. Each domain may have
several “PropertyTemplateltems”, which selects and sets properties of model elements by
using equations. PropertyTemplateltems consist of a property name, an equality sign and
an expression. Variables may be used to store attribute values from the source domain in
property values of the target domain by using them in expressions.
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Figure 1: Comparison of language-types.

4.1 Solverational and Constraint Relational Transformations

In the case of our language, Solverational, it is possible to use inequalities instead of
equalities in PropertyTemplateItems [PBMO09]. The equality sign therefore can be replaced
by smaller and greater (smaller equal, greater equal) signs.

Therefore, model-to-model transformation is a constraint satisfaction problem and not
only a logic programming approach any more. We were surprised how intuitive this
concept is, as it just requires a simple change: allowing inequalities instead of equal-
ities, only. We call this type of model-to-model transformation languages “Constraint
Relational Transformations” [PBMO09]. Figure 1 shows the relation of relational model-
to-model transformations to constraint relational model-to-model transformations. This
relation seems to be very similar to the one encountered when logic programming is en-
hanced to constraint logic programming.

Our language is implemented as a plugin for Eclipse (the Eclipse JAVA IDE) using the
ECLiPSe system (Eclipse Constraint Logic Programming System - a Prolog based con-
straint logic programming system based on many improvements to the CHIP solver, Fig-
ure 2). The transformation engine maps the input model-to-model program written in
Solverational as well as the meta-models to an ECLiPSe program. This program can be
fed with instances of these meta-models (to be more specific: the input meta-models), the
concrete input models. It transforms these input models into the target model by executing
an algorithm also presented in [PBMO09], which basically constructs a CSP and executes
1t.

The model-to-model transformation engine can also use an optimization function to select
a possible target model from the space of all target models. This optimization function
will choose the optimal target model according to an expression given in OCL in the
Solverational transformation description. This shows that model-to-model transformation
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Figure 2: General outline of the architecture of the model transformation engine.

problems can also generate constraint optimization problems, which are also important for
the declarative modeling community.

5 Differences to Classical Declarative modeling Languages

Classical declarative modeling languages, like OPL [VH99], are working on variables.
Variables may be used in constraints, which relate them. To start with a good example
involving constraints, we originally tried to implement model-to-model transformations
for user interfaces directly in OPL. However, the nature of OPL allows only to work on
instances of model elements. This means that each attribute of a model element needs to be
explicitly integrated into the OPL program by explicitly naming a new variable. Therefore
OPL programs need to be changed when introducing new instances of model elements.

Our language enables a way to declaratively control the constraint problem generation. In
fact the language does not allow to explicitly add constraints for each single model ele-
ment, but requires constraints to be defined over meta-model elements. This is called a
“model type mapping” approach to model transformation, in contrast to a “model instance
mapping” approach. The original OPL based way can in some way be seen as a “model in-
stance mapping” approach, because every instance of an attribute needs explicit markings
(i.e. an explicit variable).

Additionally, the most obvious difference is that nodes of graphs need to be mapped to
variables of a constraint problem, which is not the case for Solverational, as it is able to



work directly on types of nodes. This makes handling graphical modeling languages less
cumbersome.

5.1 Advantages of Implementing Engines Using CSPs

There are several advantages, if constraint relational transformation languages are mapped
to CSPs.

Using these mappings can save development efforts and eases the implementation, es-
pecially, if the developers are not familiar with implementing constraint solvers. In that
case, the developers of the transformation engine are able to use the capabilities of solvers,
which are available on the market. Modern constraint solvers are able to perform numer-
ous optimizations, which are hard to implement, especially when it comes to sophisticated
techniques to perform constraint propagation. This is similar to the investigation for pat-
tern matching made by Rudolf ([Rud00]).

Another advantage adresses debugging. While it is hard to develop debuggers and debug
declarative transformation programs it is possible to debug constraint logic programs - at
least the CSP generation part. A debugger exists for these while development effort needs
to be invested for a specific one for the constraint relational transformation language.

Furthermore, changing the transformation under certain aspects can be easier when editing
the constraint logic code. The model transformation language is fixed to a certain set of
constraints which will probably be a bit less powerful than the constraint solver. The rea-
son is, that the approach to generate the CSPs via the transformation language is not able to
generate every possible constraint, but only these that are handled in the language (which
can only use constraints handled by the constraint solving algorithm). But it is possible
to change the generated constraint logic program to implement the constraint. Although
this sounds cumbersome, our expierences show that this is possible and is done often,
especially when the transformation engine is being improved by further development.

It is also important to note, that developers can start the development process of the trans-
formation engine with a simple transformation from the constraint relational transforma-
tion language to the constraint logic program. This helps in understanding how the map-
ping and the constraints should look like and when options to follow are not clear (because
every documention of constraint solvers is limited in some way) developers are able to test
the constraint logic program before implementing the option in the transformation engine.

6 Example

To demonstrate how constraints are used in the model-to-model transformation language
and how they are reflected in ECLiPSe and therefore in the CSP, we present an example
derived from model driven development of user interfaces.

Abstract user interface models are transformed - which abstract from device specific prop-



top relation Container2ConcreteContainers {

domain a i:abstractsoknosuimodel::Container {
children = d:abstractsoknosuimodel::Interactor { }
b

domain c o:concretesoknosuimodel::Panel {

height >= sum(children.height),

width >= max(children.width),

children = e:concretesoknosuimodel::Component {
X = parent.x,
y >= parent.y,
y <= parent.y + parent.height,
y < nextSibling.y - height,
width < parent.width,
height < parent.height

b

Figure 3: Example of a transformation rule with constraints.

erties - into concrete user interface models. In the example, a model for a graphical user
interface is being created by the transformation. These models in turn can be transformed
by a model to code transformation into code for graphical user interfaces or interpreted by
a model interpreter (e.g. [BPMO09]). Due to space constraints we can not present the com-
plete transformation, but only a single transformation rule (Figure 3), because the complete
transformation is composed of a large set of rules and its corresponding constraint logic
program is over a thousand lines of code long. Of course, the transformation language (and
the engine) is able to transform models based on various meta-models and is not fixed to
user interface models, but still there is a long tradition in developing user interfaces based
on CSPs ([Sut64]) and also on developing user interfaces using model driven engineering
([BDRS96]). Therefore, our transformation language can be seen as a solution to combine
both ways to develop user interfaces.

In our example, we call model elements in the abstract model “Interactors” while their
more concrete counterparts are called “Components”. The transformation rule presented



will therefore produce Components from Interactors. The Interactors are contained in
Containers, which are called Panels in the concrete case, thereby Panels will be produced
from Containers. While Interactors do not have sizes and positions, because they are not
needed in abstract models, Components do have a position (“x” and “y”’) as well as a height
and width in pixels. In Figure 3 (a simplified example) two domains are presented, which
reflect the Containers and Panels. They refer to their “children” by an association, which

are either Interactors or Components, respectively.

The transformation shall check that the user interface components do not overlap and that
they are contained within their parent component, the Panel. This is done by introducing
several constraints. The first constraint requests that the height of the Panel is equal to the
sum of the heights of the children components while the second requests the width to be
greater or equal to the maximum of the widths of the children:

height = sum(children.height),
width >= max (children.width),

There are two different types of constraints on attributes of model elements:

e “local” constraints, which only affect attributes on the model element being pro-
cessed

e “association” constraints, which affect attributes of model elements which are not
the model elements being processed

Constraints on model elements, which are only using constraints which are “local” to the
model element currently being processed can directly be inserted into the CSP. This is
done straight forward by transforming the constraint directly into ECLiPSe-code.

Constraints over associations (or references to other model elements) cannot immediatly
be inserted into the CSP. E.g. children.height must be resolved before the whole CSP can
be generated, because it is not known how many associated Components will be generated
in the process or if any more associations will be set by different relations. Because all
model elements in the target model must be generated, first, these associations require
delayed execution. According to “delayed goals” from constraint logic programming we
called these goals “semi-delayed goals”. These semi-delayed goals need to be stored. The
following ECLiPSe-code shows how these constraints are being reflected in the CSP (the
example shows the constraint on height from above):

get_var ("height" ... panelattribute ... VarValue0),
make_ref var (... c_Panel_ 0 ... VarValuel_sumO),
Cl2=(VarValueO#=VarValuel_sum0),



c_Panel_O0(...) :—

Cl=(VarValue#=sum(VarValues)),

These “semi-delayed goals” are being added to a heap and executed right before the con-
straint solver. In our example we store the reference to the term “c_Panel_0” and the
constraint on it and execute it later. The term make_ref_var stores the semi-delayed goal
on the heap and produces a reference to a variable which can then be used within a con-
straint (V arV aluel_sum0). The constraint is a simple equality constraint. As can be seen
in the code it is also stored for later execution, but the variable reference which has been
produced by make_ref_var survives storing on the heap and therefore the variable can
be used in the constraint solving process afterwards. This reference is exactly the same as
VarValue in the c_Panel_0 term. Therefore, the delayed execution of the semi-delayed
goal binds the sum constraint to the reference. In ECLiPSe this enforces the variable to
be part of the CSP and therefore the constraints get connected by their variable reference.
At the point where c_Panel 0 gets executed, the structure of the graph is fixed, already
(directly before the solver gets executed). Therefore, the associations can be resolved
completely and the parameters for sum (attribute“height” of all children elements) can be
replaced by variables from the heap.

As mentioned in the previous Section, the constraints are attached to each single model
element and therefore the same number of constraints are being inserted into the CSP for
each model element of the same type. The whole CSP is composed of all constraints of all
model elements and therefore the complexity of the CSP depends on the size of the input
model, the number of constraints on each type of input model (the number of constraints in
the transformation definition) and the number and complexity of the transformation rules.

The execution of the CSP is done by a standard constraint solving algorithm. Most con-
straint solvers commonly used can be employed. Because we are mapping to ECLiPSe it
was straight forward for us to use the ic library shipped with ECLiPSe, which is a highly
optimized version of the CHIP solver.

It is obvious that the generated Panels will be Panels where all the Components are aligned
vertically. This example is simplified as Solverational is also able to automatically choose
between alternative domains. In our case this alternative could be two different Panel: one
for vertical and one for horizontal alignment. As optimization functions can be defined
in Solverational one can use an optimization function to compute the best possible layout
(e.g. use an objective function from HCI papers like [GW04] or [Sea93]).

6.1 Results from the example

As can be derived from the example the mapping of Solverational constraints to constraints
of the CSP is done on a per constraint basis. During this mapping process constraints
will either be directly mapped to CSP constraints, if the constraints are “local” to the



current model element or they need to be delayed and executed afterwards. This is done
by introducing “semi-delayed goals” which apply the constraints after the generation of
the model elements.

In general, this concept can be applied to many relational transformation approaches. The
major benefit of using CSPs to implement model-to-model transformations seems to be the
implementation, which can be done much faster than implementing new solvers. However,
our implementation can only cope with Solverational transformations. It remains an inter-
esting research question which type of transformation approaches can effectively benefit
from the approach.

7 Conclusions and Future Work

By providing a mapping from a model-to-model transformation language to a constraint
solving problem we show that both fields will be closely related, if model-to-model trans-
formation languages and engines implement constraints and constraint solvers. We demon-
strated how it is possible to map transformation rules (LHS and RHS) to constraint solving
problems in a generic way that can be applied to the QVT Relations language. It is likely
that this approach can be used for many declarative model-to-model transformation lan-
guages.

Our language and our example show that model-to-model transformations are an interest-
ing case study for constraint solving problems. Also, for implementing model-to-model
transformations with constraints our approach offers opportunities for faster implementa-
tion.

In the near future we will further increase the functionality of our prototype and explore
the practical applications offered by our approach. Our research is focused on model-to-
model transformation of user interface models and we will apply it within the SOKNOS
project, which is a project on crisis management systems funded by the German Ministry
of Education and Research (BMBF).
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