Towards Efficient Code Synthesis from Statecharts

Dag Bjorklund, Johan Lilius and Ivan Porres

TUCS Turku Centre for Computer Science
Abo Akademi University, Department of Computer Science
Lemminkéisenkatu 14, FIN-20520 Turku, Finland
{dbjorklu,jolilius,iporres} @abo.fi

Abstract: This paper describes a strategy for synthesizing efficient code from UML
statecharts based on SMDL, an intermediate language with formal operational se-
mantics. We use an intermediate language to support semantic variations in UML
models and different target programming languages. SMDL models are implemented
using Software Graphs that can be reduced to generated optimized code.

1 Introduction

The Unified Modeling Language (UML) [OMGal] is currently the most widespread soft-
ware modeling language. UML can be used in any kind of software project and it is
accepted by the industry as the standard language for software analysis and design.

UML has five different behavioral diagrams that can be used to describe the dynamics of a
system. They are the use case, statechart, activity, sequence and collaboration diagrams.
All of these diagrams except use case are closely related: statecharts are used as the
semantic foundation of the activity diagrams and it is possible to represent the execution
(a trace) of a statechart or an activity diagram as a sequence or collaboration diagram.
Use cases differ completely from the previous four diagrams in the sense that they always
show the external behavior of a system as perceived by its users, while the other four
diagrams can describe the internal behavior as well.

In this paper we present a strategy for synthesizing efficient code from UML statecharts.
A UML statechart describes the dynamics of a model element as it changes its internal
state as the reaction of receiving some external stimuli. UML statecharts can describe
the behavior of a classifier (a class) or a behavioral feature (a method of a class).

The UML behavior diagrams include many concepts that are not present in most popular
programming languages, like C++ or Java, e.g. events, states etc. This means there is
not a one-to-one mapping between a statechart and its implementation. Some model
elements, like history states, can be implemented in many different ways; this clearly
contrasts with class diagrams, that often can be easily implemented in a programming
language supporting concepts like classes and objects, composition and inheritance.

We plan to overcome this problem by introducing an intermediate language that we call
SMDL. SMDL can be used to synthesize program code from behavioral models. We
feel that a successful strategy for code synthesis should be based on the observation
that the UML notation is used in a family of languages [CKM199]. UML is used in
many application domains and there exists variations in the interpretation of diagrams

29

depending on the application, development group, programming language, etc. Using an
intermediate language allows us to describe the code synthesis as a two-step process. The
first step deals with the variations on the interpretations of UML models with respect to
SMDL. The second step deals with the implementation of SMDL models into the chosen
target language. In both steps we benefit from the fact that SMDL has a simple syntax
and precise semantics.

An important decision when synthesizing code from a modeling language is whether the
programmer will be allowed to edit the produced code or not. We have opted to hide the
final implementation from the programmer. That implies that the code does not need to
be intelligible by a human programmer, and that it is not necessary to reverse engineer the
code back into a UML model. However, this approach requires in order to be practical
that the produced code should be efficient so the programmer does not need to tweak it
by hand and it also needs to provide an environment for early simulation and animation
of the models, so the designer can validate or debug the models directly using a modeling
tool instead of examining and debugging the generated code.

The Rhapsody tool from I-Logix, for example, has adopted the the other approach, i.e.
the tool generates a framework of C++ or Java code from the UML model. The tool does
not optimize the generated code and the dynamics of the model are both defined in the
framework classes and hard-coded in the code generator.

Another difficulty in the synthesis of efficient code from statecharts is that most non-
trivial UML models are described as a combination of many classes. This is one of
the principles of OOD, a system is designed as a collaboration of interacting objects.
This also means that in order for our work to be practical, we should also study how to
generate code for collaborations of objects, including their communication mechanisms.
In the case of UML, statecharts communicate via event queues.

We proceed as follows. In the following section we present the SMDL language, its
syntax and semantics. Section 3 discusses the translation process from UML models to
SMDL models while Section 4 discusses the implementation of SMDL models in the C
programming language. Finally, Section 5 contains some conclusions and related work.

2 Definition of the Intermediate Language

SMDL is a state-oriented description language with formal semantics. It can be used as
a stable platform for interfacing UML behavioral models with tools for code synthesis,
animation, verification etc.

We do not expect the average UML practitioner to use SMDL. Instead, we intend it to
be both as a tool study the generation of efficient code and a tool for UML scholars to
discuss different aspects of UML behavioral semantics. The SMDL language is more
abstract than usual programming languages since it supports concepts like traps (high
level transitions), suspension and resumption of threads, and event queues. The language
has been specifically designed to describe the behavior of modeling languages' and, in
fact at the moment, it has only control structures but no data primitives. SMDL has a
simple syntax, formal operational semantics and there exists a reference implementation
and simulation engine available as open source [Bor01].

The syntax of SMDL is similar to the syntax of conventional programming languages

'The SMDL language is currently being extended to deal with phenomena from other languages that are
used in system modeling, like ESTEREL [BLO1].

30

and it is easy to read and write by both humans and machines. The semantics of the
language is given in terms of structural operational rules and they are explained in detail
in Section 2.2.

2.1 SMDL Syntax

A SMDL model is composed as a series of labeled statements of the form label : state-
ment. Each label is unique. Statements that directly map to a construct in a UML model,
e.g. state statements, can be labeled using the corresponding name in the statechart
diagram. When SMDL code is executed, there are one or more active labels. If two labels
are active at the same time, their associated statements can be executed in parallel.

The basic set of SMDL statements is as follows:

null null statement

if exp then [, : stat; [else [5 : stats] endif conditional branch

emit e ¢ add an event to a queue
dequeue ¢ delete an event from a queue
pariy ls...1, parallel statement
gotoly -1, state transition statement
state [entry string exit string] start of state block
endstate [end of state block

trap exp [entry string exit string] start of trap block
endtrap [do [, : staty end of trap block
suspend ! suspend a state

resume /; default /5 resume a state

[statements | atomic block

In addition to the statements and the atomic brackets, SMDL has one more important
construct, namely the sequencing operator ' ; ' .

Consider two SMDL statements statl and stat?2 with labels 11 and 12. If one wants
stat?2 to be executed 2 after statl,a ’ ; ' needs to be inserted between the statements.
This will add 12 to the active set after executing statl.

There are also statements who are forbidden to activate the statement that follows them,
for example the endstate statement. A semicolon after a endstate statement could
lead to implicit, or accidental, state transitions.

Figure 1 shows a machine with two states, S1 and S2, encoded in SMDL. The contents of
the active set as the code is executed is shown in the comments (comments can be inserted
into SMDL code after a #). We see that the sequential code of state S1 will be executed
and after this the endstate statement will put S1 back into the active set where-after it can
be executed again, i.e. we remain in state S1.

The state S2 will never be executed, since there is no ’ ; * after the endstate with label
13 that could put S2 to the active set, and there is no state transition from S1 to S2.
Writing 13 :endstate S1; would lead to a state transition from S1 to S2;a’; after
a endstate is however forbidden, as mentioned earlier, because we want to allow only
explicit state transitions using the goto statement.

2 A statement can not be forced to be executed next, except when using the atomic brackets; its label is just
activated, after which the execution engine may choose to execute it

31

active set

initial state {s1}
S1l: state # {11}
11: null; # {12}
12: null; # {13}
13: endstate S1 # {s1}
S2: state # -
14: null; # -
15: endstate S2 # -

program 1: An example of using the sequencing operator

2.2 Semantics

The intuition behind the semantics is very simple. One SMDL program represents a state-
machine. The state of a SMDL program is then represented as a tuple < «, suspend, g >
where:

e o C X is the set of active labels.

e suspend ¥ — ¥ is a partial function. If suspend(l) = I’ then [is a suspended
state and [’ is a substate of [that was active when [was suspended.

e ¢ is the set of event queues.

The active set represents the active threads of the execution, and the labels represent the
current values of the program counters. Some of the threads may be suspended. The
operational semantics is given by a set of rules that determine actions of the form:

premiss

statement
—

< «, suspend, q > < o, suspend’, q' >

The rules determine how the statements update the state of the machine.

An execution engine picks labels from the set of active states and the executes the rule
corresponding to the statement at the label. An execution policy decides on the order in
which labels are picked from the active list. A simple execution policy would view the
active set as queue and pick the first label on the queue, and append the resulting new
states to the active-set. This would correspond to a Round-Robin scheduler. We can also
define a policy that corresponds to the interpretation of orthogonality as defined in the
UML standard. In this case the policy dictates that we should look for all enabled labels
(i.e. active labels whose statement can be executed). The statements defined by this set
of labels are then executed sequentially in some order before we start looking for a new
set of statements. Other execution polices are also possible: e.g. it is easy to introduce a
priority based policy by attaching priorities to all the labels.

Before we can look in detail at the operational rules we need to formalize the structure
of an SMDL program. An SMDL program is defined by the tuple (X, 1 ,>, £) where:

e Y is the set of labels.

e T C X x X is the parent relation. The parent relation organizes the labels in X

hierarchically in a tree.
32

e ~C X X X is the immediate successor relation. If [1,l, € ¥ and [y > [then iy
succeeds /1 in the program.

e L : 3 — statement is a total function that maps each label to its statement.

We can take the closure T* of the parent relation T . Let /3 and [5 be labels, then
l1 7" lo means that [is an ancestor of [5.

We use the domain/range restriction operators / and the domain/range subtraction

</ ¥ operators as defined in [PST91] to operate on the relations: Let S be a set and
R arelation, then R S is a restriction of R, where every element in the domain of R is
a member of the set S. The domain/range subtraction operators are similar, except they
remove the elements in the set from the relation.

We now discuss the rules that define the semantics of the indivudial statements. There
are in total 18 rules that define the semantics of the language. In this paper we only show
the most basic rules but the reader can find in [Bjo01] a complete description of all rules.

Rule 1 Parallel statements

For a statement to be executed, its label has to be active i.e. a member of «. The par
statement updates the active set by, as most statements, removing its own label from the
set; it also adds all its argument labels to the active set. This means that the arguments
then can be executed in parallel. The par statement is used to model orthogonal regions.

leanLlll=parilly - 1y

l: gy
<a,g> "3 <a-—{l} Uyzl{li},q>

Rule 2 State

A state statement models a state in a state machine; it can act when its label is active.
It removes its label from the active set and adds its successor to the set. It will also
remove all its ancestors from the domain of the suspend relation. This, because a state
that is suspended may be entered without calling a resume statement, which would leave
garbage in the suspend relation without this procedure. History states e.g. are modeled
in SMDL using the suspend and resume statements.

leanL]l] =state Nl =1y

l:state

< a,suspend,q > — < a—{l}U{li}, (T {I}) 4 suspend, q >

Rule 3 Endstate

An endstate statement can act when its label is active. It removes its label from the active
set, and reactivates the label of the corresponding state statement i.e. the state block
can be executed again, until a state transition is taken out of it.

l € aAL]l] = endstate I
<a,q S o (3 U{rY, g >

Rule 4 State transition
33

ll ll

N\ VN
15 15 12 13
N\ — N\
l4 l5 l4 15
NN NN
16 l7 lg lg 16 l? 18 l9

Figure 1: Label trees: a) before the transition b) after the transition

The goto statement is used to model state transitions in SMDL. It takes one or many
labels as parameters; a fork pseudo state can be modeled by giving a goto statement
several parameters. A goto statement can act when its label is active. It removes all the
labels in the subtree containing both the source and the destination(s) of the transition
from the active set. Then all the labels of any trap statements that are ancestors of the
destination labels are added to the active set, and of course all the destination labels.

leanLll]=gotolily -+ Iy
<a >g°t°ll—12>ml"< a—ran({lmin} T71) U?:l trapanc(l;) U {ly,...,l,} >

where [,,,;,, is the root of the minimal subtree containing [and 1, . .., l,,, and trapanc(l)
gives the set of labels belonging to trap statements that are ancestors of label /.
Example
As an example, consider a machine with labels:
Y= {ll, 12, l3, l4, l5, 167 l7, lg, lg}
parent relation:
T = {ll — lg,ll — lg,lg = l4,lg = l5,l4 = lﬁ,l4 = l7,l5 = lg,l5 = lg}
current active set:
o = {l27 lg, ZG}
and some of the labels mapped to statements as follows:
L[ls] =trap er q1 in

L[l5] = trap es q1 in
L[lg] = goto Iy
Lllg] = state

The label tree before the transition is shown in Figure 1. The labels that are active are
bolded.

First we find that the root of the minimal subtree spanning lg and [is I5.

The active set after the transition then becomes:

{lQ,l3,l6} — rcm({lg — l4,l2 (g l5,l2 [ad l6,l2 = l7,l2 [d lg,lg [ad lg}) U l5 U l9
={l2,13,15,l9}

The label tree after the transition is shown in Figure 1 b).
Rule 5 Trap

The trap statement can be used to model states with top level transitions. It can also be
thought of as an interrupt handler. It does not remove its label from the active set when its
block is entered; hence, it can be executed at any time while inside its block. It chooses
its branch depending on whether the expression evaluates to true or false, and whether it

has active children.
34

The expression is true; execute the do statement without allowing interrupts.
l€anerp=true L[] =trapexp N < aU{l1},q Shistah q >

Litr :
<a,q> PSP o, q >

Where [y : stat; is the statement in endtrap do ly : staty

The expression is false and the trap statement has no active descendants; activate the
successor of [:

leanmin(l,a) Nexp = false Nl > 11y A L[] = trap exp

l:t
<a,qg> S U}, g >

The expression is false and the trap statement has active descendants; do nothing:

l € an-min(l,a) Nexp = false A L]l] = trap exp

l:itrap exp
<a,qg> =< a,q>

Rule 6 Endtrap

An endtrap statement can act when its label is active. An endtrap statement marks
the end of a trap block. It is of interest mainly for the preprocessor, it has no semantic
function in runtime. The do statement is executed by the corresponding trap statement.

leanL]l] =endtrapl’ doly : stat

dtrap U do Iy stat
<o, g > {1}, g >

3 Converting UML Models to SMDL

SMDL models are generated and interpreted by a software tool. The transformation
from a UML model into a SMDL model has to deal with the fact that UML is a family of
languages, both at the semantic and the syntactic level. At the syntactic level there exists
differences between the different implementations of the XMI, although we expect that,
in the future, most UML tools will adopt the XMI metamodel as specified in [OMGb].
However, the most important differences exist in the interpretation of UML models.

These differences are created because UML can be applied in all kind of software projects
and it has to be adapted to different models of computation, communication, concurrency
and time. Also, the UML language is rich and provides many different modeling con-
cepts that can be combined in many different ways. A simple example of this is the
interpretation of the statechart shown in Figure 2. If states S1 and S3 are active and the
current event is e, both transitions will fire in the same step. However, depending on our
interpretation of orthogonality the actions associated with the transitions will be executed
in different orders. For example, if we fire the transitions sequentially, in a deterministic
order, the actions could be executed in this order: al; a2; a3; a4; ab; a6. We use the semi-
colon to denote the sequential composition of actions. The ordering a4; a5; a6; al; a2; a3
is allowed as well.

A concurrent implementation for statecharts could arrange the execution in the following
way: (al;a2;a3)||(a4;ab;a6) where || stands for the parallel composition of actions.

S1 e/a2 S2

exit/al entry/a3

S3 e/a5 S4
exit/a4 entry/a6

Figure 2: Interpretation of orthogonality

However, the definition of entry and exit actions in the UML semantics specification also
allows other orders of execution, like (all|ad); (a2||ab); (a3||a6). All these different
ways to interpret the previous diagram are valid and their adoption can be justified by the
application domain of the model or the target language.

We plan to support semantic variation in the UML language by providing different trans-
lations from UML to SMDL. However, the semantics of SMDL is fixed as well as the
code generation of SMDL models into the target programming language and we can
reuse them in any variant of UML.

SMDL does not support directly all the UML model elements since this would increase
the complexity of the language and prevent semantic variations. Instead, we are devel-
oping a set of transformation rules that show how to represent a complex UML model
element using a combination of more basic model elements. The objective is to apply
these rules until the UML model only contains basic elements that have a counterpart
in SMDL so the model can be translated almost trivially. Currently, the transformation
rules are hard-coded into the tool but in the future we want to be able to define them in
a configuration file. As an example of these rules, we describe below how to remove
activities and initial states.

3.1 Activities

Each state can be associated with an activity that is performed while the state is active.
We assume that we know how to start and stop an activity and to detect when it has
terminated, since these concepts appear implicitly in the UML Semantic guide. Given an
activity a we name these actions a.start and a.stop and the query as a. finished.

We can remove the “do Activity” association from a state by starting and stopping it
using the entry and exit actions of the state. If there is a completion transition associated
with the state, then the completion transition is changed by a transition triggered by the
change event a. finished(). The following algorithm shows how to apply these changes
in a state:

removeActivityFromState(s: State):
s.entry:= ActionSequence(action=(s.entry,s.doActivity.start))
s.exit := ActionSequence(action=(s.doActivity.stop ,s.exit))
forAll transition t in s.outgoing:

36

S1 S3

S1 S3

Figure 3: Removing initial states

if t.trigger=None then
t.trigger:=ChangeEvent (changeExpression=s.doActivity.finished)
s.doActivity:=None

3.2 Initial states

Another transformation is the removal of initial pseudostates. We can remove an ini-
tial pseudostate by redirecting the transitions directed to its container to the state vertex
pointed by the initial pseudostate. Figure 3 shows an instance of this transformation.

The transformation is described in the following algorithm. To simplify the exposition,
we assume that the composite state is not concurrent, i.e. it does not contain orthogonal
regions. Otherwise, it is necessary to add a fork pseudostate so all transitions directed to
the composite state are forked to the default state of each orthogonal region.

defaultState(cs: CompositeState}: StateVertex
assume not cs.isConcurrent
result=None
forAll statevertex sv in cs.vertex:
if sv.kind = PseudoStateKind.pk initial then
result=sv.outgoing.target

removeInitialState(cs: CompositeState):

assume not cs.isConcurrent

if defaultState(cs)!= None then

forAll transition t in cs.incoming:
t.target=defaultState(cs)

forAll statevertex sv in cs.vertex:
if sv.kind= PseudoStateKind.pk initial then
cs.vertex.remove(sv)

37

L: state
A: state entry "f();’
11: if el in g then
12: goto D
endif;
13: if e2 in g then

14: goto B
L /. endif;

A 15: endstate A
entry/f();

B: state
16: if el in g then
17: goto D
endif;
18: endstate B
C: state entry ’g();’ exit 'h();’
D: state entry 'i()’
19: if e3 in g then
110: goto A
endif;
111: endstate D
112: endstate C
113: endstate L

C entry/g();
exit/h();

D
entry/i();

Figure 4: Example UML statechart and its translation into SMDL

We do not use the algorithm to remove the initial state associated with the top state of
the statechart (the state that transitively contains all other states). In this case, the initial
state is translated into the first label of the SMDL model.

Figure 4 shows an example statechart and its transformation into SMDL. In SMDL we
do not give any interpretation for the actions in the state machine and we assume that
they are written in the target language.

Once we have translated a UML model into SMDL we can animate the model to validate
it. We have implemented a prototype of an animation tool based on the operational
semantics presented before. The animation tool presents a dialog box that allows the
user to generate events for the model and observe the active set of states in the model.

It could be possible to interface the animation tool with a UML editor to represent graph-
ically the activity of the model as it is done in tools like Rhapsody. The information
needed to trace back the activity of the SMDL model into the UML model can be en-
coded in the labels of the SMDL statements.

4 Implementation of SMDL Models

We are working towards efficient code generation from SMDL models. Our intention is
that the generated code does not need to be optimized by hand by a programmer. The
code synthesis process is similar to that of the POLIS approach [B*97] and it is based on
Software Graphs or S-Graphs. An S-Graph is a directed acyclic graph used to describe a
decision tree with assignments.

The S-Graphs can be minimized, which allows us to generate code that is optimized on a
higher level than what the target language compiler is capable of; furthermore, compact

38

el/g0:10

(B) el/e0:i0
NG

e3/h(:f0;
Figure 5: Flat state machine

assembly code could be synthesized directly for targets lacking higher level language
compilers. Another property of the S-Graphs is that they are very well-suited for code-
size and performance estimation, which is often important in embedded systems.

The translation of a SMDL model into optimized code proceeds in five steps.

1. Translation (flattening) of the SMDL code to a simple finite stat machine (FSM)
2. Translation of the FSM into an S-graph

3. S-graph optimization

4. Translation of the S-graph into a target language

5

. Compilation into machine code.

The first step is the flattening of the state machine. Flattening means transforming the
SMDL model into a flat finite state machine FSM, or a transition table. We use an
algorithmic method to flatten the model, and we also have prototype software performing
the task. The FSM produced by our software from the example SMDL code is shown in
Figure 5.

The flat state machine is translated into an S-graph, which is optimized for size. An S-
graph consists of a set of vertices V which contains four types of vertices: BEGIN, END,
TEST and ASSIGN. Every S-graph has one vertex of type BEGIN, called the source and
one vertex of type END, called the sink. All other vertices are of type TEST or ASSIGN.
Each TEST vertex v has two children, which are called true (v) and false(v). Each
BEGIN or ASSIGN vertex u has only one child next (u). Each vertex is labeled with
a function.

Two nodes are isomorphic if they have the same label, and their child or children are
isomorphic. A test node is redundant if both its true- and false-branch lead to the same
node. If there are no two isomorphic nodes in an S-graph, and all redundant tests are
eliminated, the graph is said to be reduced. A reduced S-Graph can usually be optimized
further by reordering the nodes, but this procedure is beyond the scope of this paper.

The code synthesis will produce a function that takes the current state and an event as
parameters, and returns the next state. The state parameter is called S, and the event
parameter is called E. For example, to test if the machine is in state A, a test node with
the label S = A is generated. To do a state transition to state B, an assign node with
label S := B is produced.

The optimized S-graph of the machine in Figure 4 is shown in Figure 6. The dashed lines
denote false-branches; solid lines denote true-branches.

39

The translation of the S-graph to C code is straightforward due to the direct correspon-
dence between the nodes in the graph and the C primitives. Also e.g. assembly code or
even logic gates could easily be generated from the S-graphs.

As can be seen in the figures, each node in the S-graphs have a unique index. These
are used as labels that can be jumped to using the goto statement in the C code. Each
operation performed by a node is labeled in the code, thus nodes that are reused, that is,
have multiple parents in the S-graph can also be reused in the code when all the parents
generate goto statements to the same label. This unstructured code hinders its readability,
but as we stressed earlier, no human should ever read this code.

From the test nodes, a conditional branch structure is generated; if the test is true, a
jump is taken to the label of the true branch of the test node, otherwise a jump to the
false branch is taken. Assign nodes result in the action in the label of the node, followed
by a jump to the label of the next node of the assign node. The code can be slightly
reduced further by combining subsequent assign nodes with single parents. In the C
code this results in a goto statement being saved when two assign nodes are combined.
The C code generated from the running example is included in Figure 6. We explain the
algorithms used for S-graph optimization and implementation in [Bjo01].

int trans(int S, int E) {
13: if (S == A)
goto 15;
else
goto 112;
15: if (E == e2)
goto 17;
else
goto 120;
17: S = B;
1l6: return S;
120: if (E == el)
goto 124;
else
goto 16;
124: g();i(); S = D; goto 16;
112: if (S == D)
goto 113;
else
goto 118;
113: if (E
goto 117;
else
goto 16;
117: h();£();S
118: if (S ==
goto 120;
else
goto 16;

e3)

goto 16;

w
-

}

Figure 6: Optimal S-graph with 13 nodes and its implementation in C

40

5 Summary

We have presented a strategy for code generation from statecharts based on SMDL.
SMDL is a language for modeling behaviors and it can be used to capture the dynamics
of UML behavioral diagrams. SMDL cannot describe data structures but it has built in
support for concurrency, event queues, etc. It has a simple syntax and formal semantics
given as structural operational rules.

This is still work in progress. We have only applied SMDL to a subset of UML stat-
echarts and their implementation in C. However, we think that this approach can be
extended to other behavioral diagrams like activity and interaction diagrams and other
target languages. There is a prototype implementation of a tool for code generation and
animation of SMDL models. Currently, the transformation rules are hard-coded into the
tool and it only support a limited subset of UML features.

There are many interesting articles discussing the semantics of UML behavioral diagrams
and in concrete of UML statecharts, for example see [LMM99, LP99]. However, it seems
that their implementation is not discussed so often.

Bibliography
[BT97] Felice Balarin et al. Hardware-Software Co-Design of Embedded Systems. Kluwer

Academic Publishers, 1997.

[Bjo01] Dag Bjorklund. The SMDL statechart description language: Design, semantics and
implementation. Master’s thesis, Abo Akademi University, 2001.

[BLO1] Dag Bjorklund and Johan Lilius. Towards a kernel language for heterogenous com-
puting. submitted paper, 2001.
[BorO1] Dag Borklund. The c¢SMDL System, homepage. Internet:

http://infa.abo.fi/"dbjorklu/cSMDL, 2001.

[CKM*99] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. Defining UML
family members using prefaces. In IEEE, editor, Procceedings of TOOLS 32, 1999.

[LMM99] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational se-
mantics of UML statechart diagrams. In 3rd International Conference on Formal
Methods for Open Object-Oriented Distributed Systems, Boston, 1999. Kluwer Aca-
demic Publishers.

[LP99] J. Lilius and I. Porres. Formalising UML state machines for model checking. In
Robert France and Bernhard Rumpe, editors, UML’99 - The Unified Modeling Lan-
guage. Beyond the Standard. Second International Conference, Fort Collins, CO,
USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS. Springer, 1999.

[OMGa] OMG. OMG Unified Language Specification. Version 1.3 , March 2000, available
from http://www.omg.org.

[OMGb] OMG. OMG XML Metadata Interchange (XMI) Specification. 2000, available from
http://www.omg.org.

[PSTI1] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and
Z. Prentice Hall, 1991.

41

